
Stateflow® Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Stateflow® Release Notes
© COPYRIGHT 2000–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2022a

Use Symbols pane while writing MATLAB function code 1-2

Manage Stateflow breakpoints in the Simulink Breakpoints List pane . . 1-2

Expanded string support for charts that use MATLAB as the action
language . 1-2

Repeat data names at different levels of the chart hierarchy 1-2

Export chart-level Simulink functions . 1-2

Convert states that contain supertransitions to atomic subcharts 1-2

Convert machine-parented data to chart-parented data store memory
. 1-3

Functionality being removed or changed . 1-3
Use strong data typing with Simulink I/O chart property has been removed

. 1-3

R2021b

Create entry and exit connections across hierarchy boundaries 2-2

Detect rising and falling edges in data expressions 2-2

MATLAB Function block editor in Stateflow window 2-4

Index and assign values to arrays of structures in C action language . . . 2-5

String support for charts that use MATLAB as the action language 2-5

Navigate using the Stateflow miniature map . 2-5

Functionality being removed or changed . 2-6
Stateflow charts no longer support creating machine-parented data 2-6
Stateflow truth tables no longer generate content 2-6

iii

Contents

R2021a

Edit the color of data syntax highlighting . 3-2

Add Stateflow chart behavior to an architecture component 3-2

64-bit integer type support for parameters . 3-2

Half-precision data type support . 3-3

Multidimensional variable support for row-major arrays 3-3

Reverse transitions . 3-3

Insert components without leaving the Stateflow canvas 3-3

R2020b

Visualize chart behavior with the Activity Profiler 4-2

Design state machines to control MATLAB apps . 4-2

Connect dashboard blocks to Stateflow . 4-2

Execute standalone charts saved in earlier versions of Stateflow 4-2

Programmatically extract actions from states and transitions 4-3

Multidimensional custom code function support for row-major 4-3

Use the Sequence Viewer in the toolstrip to visualize message flow,
function calls, and state transitions . 4-4

Generated default switch cases determined alphabetically 4-4

R2020a

Generate code for variant software configurations 5-2

64-bit integer type support for charts that use MATLAB as the action
language . 5-2

Cache and report compilation warnings . 5-2

iv Contents

Multidimensional array indexing for constant, Data Store Memory, and
message data . 5-2

Absolute-time temporal logic operators for standalone charts in MATLAB
. 5-3

Event queuing semantics in standalone charts in MATLAB 5-3

Export standalone Stateflow charts for execution in earlier versions of
MATLAB . 5-3

Functionality being removed or changed . 5-4
Behavior in charts with 64-bit fixed-point type inputs could change 5-4

R2019b

Stateflow Onramp: Self-paced, interactive tutorial for getting started with
Stateflow . 6-2

Simulink Toolstrip: Access Stateflow capabilities by using contextual tabs
. 6-3
Stateflow Editor Changes . 6-4

Flow Charts from MATLAB: Visualize MATLAB scripts and functions as
Stateflow flow charts . 6-6

64-bit integer types int64 and uint64 . 6-6

Change detection in standalone Stateflow charts . 6-6

Debugging enhancements for standalone Stateflow charts in MATLAB
. 6-6

Enhanced support of row-major data in Stateflow blocks 6-6

External receiving queues for input messages . 6-7

Message delivery in debugging mode . 6-7

Propagation of symbolic dimensions for Stateflow data 6-7

Stateflow cache file support for code generation and Simulink 6-8

Zoom in Truth Tables . 6-8

Functionality being removed or changed . 6-8
Use dot notation to access message data in MATLAB functions and truth

tables . 6-8
Transition execution order is always visible . 6-9
Log multiple signals . 6-9

v

Opening Stateflow . 6-10

R2019a

Stateflow Charts in MATLAB: Graphically program, debug, and execute
standalone state machines as MATLAB objects 7-2

Truth Table Breakpoints: Check Truth Table logic by setting breakpoints
and stepping though Truth Table simulation . 7-2

Custom Code Symbols: Examine values when debugging a chart 7-2

Change detection for buses and matrices . 7-3

Enhanced subchart mapping capabilities . 7-3

Optimized counters for temporal logic . 7-3

Relaxed restrictions on Moore charts . 7-3

State machine logic control by using the count operator 7-3

Stateflow contextual tabs in the Simulink Toolstrip 7-3

R2018b

Simulation Debugger: Check chart logic with simplified breakpoint
management, statement-by-statement stepping, and in-canvas
visualization of data and time . 8-2

External C Code: Fully integrate external C code in Stateflow charts with
change synchronization, error checking, and analysis by Simulink
Coverage and Simulink Design Verifier . 8-2

Row-Major Array Layout: Define the array layout as row-major to simplify
integration with external C/C++ functions, tools, and libraries 8-2

Strings: Design embedded systems with native support of strings 8-3

Messages: Produce strictly typed, readable, and MISRA-C Mandatory and
Required check compliant code from messages 8-5

C action language in state transition tables . 8-5

Custom code headers for enumerated data and buses 8-6

vi Contents

Multidimensional array indexing in generated code 8-6

Pass-by-reference semantics in functions . 8-6

Functionality being removed or changed . 8-6
Stateflow charts that integrate custom code may need to turn off option

Import Custom Code in the Configuration Parameters 8-6

R2018a

Truth Table Editor: Design combinatorial logic within the Simulink and
Stateflow editing environment by using edit-time checking, animation,
and step-by-step debugging . 9-2

Just-In-Time Debugger: Set breakpoints and debug Stateflow charts while
using Just-In-Time simulation . 9-2

Implicit entry,during action type for unspecified state actions 9-2

Input events for atomic subcharts . 9-2

R2017b

Simulink Subsystem as a Stateflow State: Design states by using
continuous and periodic Simulink algorithms to model hybrid systems
. 10-2

Sequence Viewer: Visualize state changes, event activity, and function
calls over time . 10-2

State and Data Visualization: Stream state activity and data directly from
Stateflow to the Simulation Data Inspector . 10-2

Transition Syntax Cues: Create transition labels using syntax cues 10-2

Symbols pane preferences . 10-3

Conversion of Switch-Case statements with parameters 10-3

Local data initialization . 10-3

Scoped Simulink functions . 10-3

vii

R2017a

Stateflow Layout: Automatically improve chart readability 11-2

Temporal Logic Operators: Express state machine logic more concisely by
using the duration and the elapsed operators 11-2

Message Operations: Manage messages and analyze message queues with
the keywords discard, length, isvalid, and receive 11-2

Editing cues for creating junctions and states . 11-3

Automatic port generation . 11-3

Automatic correction of variable type assignment errors 11-3

Reduce use of coder.extrinsic . 11-4

Zoom in State Transition Tables . 11-4

Absolute-time temporal logic code generation . 11-4

State behavior specification for Truth Table blocks with function-call
input events . 11-5

R2016b

Edit-Time Checking: Detect and fix potential issues in charts at design
time . 12-2

Symbol Manager: Create and manage data, events, and messages directly
in the Stateflow Editor . 12-2

Property Inspector: Edit properties of graphical and nongraphical objects
directly in the Stateflow Editor . 12-3

State Transition Table Debugging: Design and debug tabular state
machines faster by using animation, syntax highlighting, and
breakpoints . 12-3

Syntax Highlighting: Identify events and function names easily in charts
with MATLAB as the action language . 12-3

Scoped Simulink Function Access: Call exported chart functions with
restricted scope from Simulink function blocks 12-3

Diagnostic configuration parameters . 12-4

viii Contents

Diagnostic level option for message queue overflows 12-5

Message Viewer updates to inspect values of structured data and
sequencing of function calls . 12-5

Bus support for Simulink Caller blocks calling Stateflow functions 12-6

Conditional breakpoints in MATLAB Functions for run-time debugging
. 12-6

Compiler optimization parameter support for faster simulation 12-6

Text Autocompletion for State Transition Tables 12-6

R2016a

Smart Editing Cues: Accelerate common editing tasks with just-in-time
contextual prompts . 13-2

Intelligent Chart Completion: Build charts faster with automatic addition
of default transitions and creation of complementary state names
. 13-2

Simulink Units: Specify, visualize, and check consistency of units on chart
interfaces . 13-2

Output Logging: Log output signals for charts . 13-3

JIT for Messages: Reduce model update time for messages with JIT
compilation technology . 13-3

API changes for commented objects . 13-3

Stateflow model templates for common design patterns 13-3

UserData parameter available for storing values 13-4

R2015aSP1

Bug Fixes

ix

R2015b

Multilingual Labels: Use any language to create comments and
descriptions in states and transitions . 15-2

Messages: Objects that carry data and can be queued 15-2

Overflow and data range detection settings unified with Simulink 15-2

New State Transition Table Editor: Dock state transition tables within the
Stateflow editor window . 15-3

Monitor State Activity in Code: Bind active state child variable to
Simulink.Signal for controlling its properties in generated code 15-3

Initial values supported for data in charts that use MATLAB as the action
language . 15-3

Continuous-time update method not allowed in Moore charts 15-4

R2015a

JIT compilation technology to reduce model update time 16-2

Mapping of atomic subchart variables with main chart variables of
different scope . 16-2

Moore chart improvements for functions, local data, and code readability
. 16-3

Nonprefixed enumerations in charts using MATLAB as action language
. 16-3

Removal of transition error checking . 16-4

Removal of set breakpoints options in property dialog boxes 16-4

R2014b

Comment-out capability to disable objects in the state diagram 17-2

Window to manage conditional breakpoints and watch chart data 17-2

x Contents

Simulink blocks that create and call functions across Simulink and
Stateflow . 17-2

User-controlled enumeration size for active state output 17-2

Faster chart simulation and animation . 17-3

Improved state transition matrix . 17-3

Active state output not allowed with Initialize Outputs Every Time Chart
Wakes Up . 17-3

R2014a

Intelligent tab completion in charts . 18-2

Single chart block in Stateflow library with MATLAB as the default action
language . 18-2

Bus signal logging in charts . 18-2

Output of leaf-state activity to Simulink . 18-2

UTF-16 character support for Stateflow blocks . 18-2

Syntax auto-correction inserts explicit cast for literals 18-2

Improved algebraic loop handling in Simulink can affect Stateflow blocks
. 18-2

Typedef generation management for imported buses and enumerations
. 18-2

Updated Search & Replace tool . 18-3

Support of complex data types with data store memory 18-3

Streamlined MEX compiler setup and improved troubleshooting 18-3

Moore chart outputs cannot depend on inputs . 18-3

Transition conflict error checking only on C charts with implicit
execution order . 18-3

xi

R2013b

LCC compiler included on Windows 64-bit platform for running
simulations . 19-2

Tab completion for keywords and data in charts 19-2

Pattern Wizard for inserting logic patterns into existing flow charts . . . 19-2

Absolute time temporal logic keywords, msec and usec, for specifying
short time intervals . 19-2

Continuous time support in charts with MATLAB as the action language
. 19-2

Content preview for Stateflow charts . 19-2

Code generation improvement for absolute-time temporal logic in charts
with discrete sample times . 19-3

R2013a

Output of child-state activity to Simulink using automatically managed
enumerations . 20-2

Masking of Stateflow block to customize appearance, parameters, and
documentation . 20-2

Option to parse Stateflow chart to detect syntax errors and unresolved
symbols without updating diagram . 20-2

Propagation of parameter names to generated code for improved code
readability . 20-2

Complex inputs and outputs for exported graphical functions 20-2

Use of type(data_name) for specifying output data type disallowed for
buses . 20-2

New and enhanced examples . 20-3

xii Contents

R2012b

New editor for Stateflow charts and Simulink models with tabbed
windows and model browser tree . 21-2
Stateflow Editor menu bar changes . 21-2
Stateflow Editor context menu changes . 21-2
Stateflow keyboard and mouse shortcut changes 21-3

Editing assistance through smart guides, drag margins, transition
indicator lines, and just-in-time error notifications 21-4

State transition tables that provide tabular interface to model state
machines . 21-5

MATLAB language for state and transition labels with chart syntax auto-
correction . 21-5

In-chart debugging with visual breakpoints and datatips 21-6

Reuse of graphical functions with atomic boxes 21-8

Fewer restrictions for converting states to atomic subcharts 21-8

Diagnostic for undirected local event broadcasts 21-8

Diagnostic for transition action specified before condition action 21-9

Parentheses to identify function-call output events on chart and truth
table block icons . 21-10

Resolution of qualified state and data names . 21-10

Support for simulating charts in a folder that has the # symbol on 32-bit
Windows platforms . 21-11

Mac screen menubar enabled when Stateflow is installed 21-11

Option to print charts to figure windows no longer available 21-11

End of Broadcast breakpoint no longer available for input events 21-11

Boxes can no longer be converted to states . 21-11

R2012a

API Method for Highlighting Chart Objects . 22-2

xiii

API Method for Finding Transitions That Terminate on States, Boxes, or
Junctions . 22-2

API Property That Specifies the Destination Endpoint of a Transition
. 22-2

Structures and Enumerated Data Types Supported for Inputs and Outputs
of Exported Graphical Functions . 22-2

Mappings Tab in Atomic Subchart Properties Dialog Lists All Valid Scopes
. 22-2

Full Decision Coverage When Suppressing Default Cases in the Generated
Code . 22-3

Specification of Custom Header Files in the Configuration Parameters
Dialog Box Required for Enumerated Types . 22-3

Removal of ‘Use Strong Data Typing with Simulink I/O’ in a Future
Release . 22-3

R2011b

Chart Property to Control Saturation for Integer Overflow 23-2

Enhanced User Interface for Logging Data and States 23-2

Control of Default Case Generation for Switch-Case Statements in
Generated Code . 23-2

Detection of State Inconsistency Errors at Compile Time Instead of Run
Time . 23-3

Ability to Model Persistent Output Data for Mealy and Moore Charts
. 23-3

Control of Diagnostic for Multiple Unconditional Transitions from One
Source . 23-4

MEX Compilation with Microsoft Windows SDK 7.1 Now Supported . . . 23-4

Simulation Supported When the Current Folder Is a UNC Path 23-4

Removal of the Coverage Tab from the Stateflow Debugger 23-4

Test Point Selection Moved to the Logging Tab in Properties Dialog Boxes
. 23-5

xiv Contents

R2011a

Migration of Stateflow Coder Features to New Product 24-2

Embedded MATLAB Functions Renamed as MATLAB Functions in
Stateflow Charts . 24-2

Use of MATLAB Expressions to Specify Data Size 24-2

Ability to Change Data Values While Debugging 24-3

Ability to Debug a Single Chart When Multiple Charts Exist in a Model
. 24-3

Support for Input Events in Atomic Subcharts . 24-4

Control of Generated Function Names for Atomic Subcharts 24-5

Enhanced Data Sorting in the Stateflow Debugger 24-5

Option to Maintain Highlighting of Active States After Simulation 24-6

Right-Click Options for Setting Local Breakpoints 24-6

New Signal Logging Format That Simplifies Access to States and Local
Data . 24-7

Support for Buses in Data Store Memory . 24-7

Enhanced Readability of State Functions . 24-7

Support for Arrays of Buses as Inputs and Outputs of Charts and
Functions . 24-7

Default Setting of 'States When Enabling' Chart Property Now Held . . . 24-8

Initial Value Vectors with Fixed-Point or Enumerated Values Now Evaluate
Correctly . 24-8

Mac Screen Menubar Disabled When Stateflow Is Installed 24-8

R2010bSP2

Bug Fixes

xv

R2010bSP1

Bug Fixes

R2010b

New Atomic Subcharts to Create Reusable States for Large-Scale
Modeling . 27-2

Stateflow Library Charts Now Support Instances with Different Data
Sizes, Types, and Complexities . 27-2

Support for Controlling Stateflow Diagnostics in the Configuration
Parameters Dialog Box . 27-2

Enhanced Custom-Code Parsing to Improve Reporting of Unresolved
Symbols . 27-2

Temporal Logic Conditions Can Now Guard Transitions Originating from
Junctions . 27-3

Data Dialog Box Enhancements . 27-3

Branching of Function-Call Output Events No Longer Requires Binding of
Event to a State . 27-3

Passing Real Values to Function Inputs of Complex Type Disallowed . . . 27-3

Using Chart Block That Accesses Global Data in For Each Subsystem
Disallowed . 27-4

New and Enhanced Demos . 27-4

R2010a

Support for Combining Actions in State Labels . 28-2

New Diagnostic Detects Unused Data and Events 28-2

Enhanced Support for Variable-Size Chart Inputs and Outputs 28-2

Support for Chart-Level Data with Fixed-Point Word Lengths Up to 128
Bits . 28-2

xvi Contents

New 'States When Enabling' Property for Charts with Function-Call Input
Events . 28-3

Support for Tunable Structures of Parameter Scope in Charts 28-3

Enhanced Real-Time Workshop Code Generation for Noninlined State
Functions . 28-3

Enhanced Real-Time Workshop Code Generation for sizeof Function . . 28-3

Enhanced Real-Time Workshop Code Generation for Custom-Code
Function Calls . 28-4

Data Change Implicit Event No Longer Supports Machine-Parented Data
. 28-4

Support for Machine-Parented Events Completely Removed 28-4

MEX Compilation with Microsoft Visual Studio .NET 2003 No Longer
Supported . 28-5

Code Generation Status Messages No Longer Shown in Command Window
. 28-5

Change in Behavior for Appearance of Optimization Parameters 28-5

Enhanced Inlining of Generated Code That Calls Subfunctions 28-5

Check Box for 'Treat as atomic unit' Now Always Selected 28-6

R2009bSP1

Bug Fixes

R2009b

Ability to Copy Simulink Function-Call Subsystems and Paste in Stateflow
Editor as Simulink Functions, and Vice Versa 30-2

Ability to Generate Switch-Case Statements for Flow Graphs and
Embedded MATLAB Functions Using Real-Time Workshop Embedded
Coder Software . 30-2

Support for Creating Switch-Case Flow Graphs Using the Pattern Wizard
. 30-2

xvii

Support for Using More Than 254 Events in a Chart 30-2

Improved Panning and Selection of States and Transitions When Using
Stateflow Debugger . 30-3

Stateflow Compilation Status Added to Progress Indicator on Simulink
Status Bar . 30-3

Support for Chart Inputs and Outputs That Vary in Dimension During
Simulation . 30-3

New Compilation Report for Embedded MATLAB Functions in Stateflow
Charts . 30-3

Enhanced Support for Replacing Math Functions with Target-Specific
Implementations . 30-3

Enhanced Context Menu Support for Adding Flow Graph Patterns to
Charts . 30-4

Option to Log Chart Signals Available in the Stateflow Editor 30-4

Default Precision Set to Double for Calls to C Math Functions 30-4

Change in Text and Visibility of Parameter Prompt for Easier Use with
Fixed-Point Advisor and Fixed-Point Tool . 30-4

Charts Closed By Default When Opening Models Saved in Formats of
Earlier Versions . 30-5

R2009a

Support for Saving the Complete Simulation State at a Specific Time
. 31-2

Enhanced Support for Enumerated Data Types . 31-2

New Boolean Keywords in Stateflow Action Language 31-2

Enhanced Control of Inlining State Functions in Generated Code 31-2

New Diagnostic to Detect Unintended Backtracking Behavior in Flow
Graphs . 31-2

Use of Basic Linear Algebra Subprograms (BLAS) Libraries for Speed
. 31-2

Enhanced Support for Replacing C Math Functions with Target-Specific
Implementations . 31-3

xviii Contents

Smart Transitions Now Prefer Straight Lines . 31-3

Clicking Up-Arrow Button in the Stateflow Editor Closes Top-Level Chart
. 31-3

Enhanced Type Resolution for Symbols . 31-3

Enhanced Code Generation for Stateflow Events 31-3

Enhanced Real-Time Workshop Generated Code for Charts with Simulink
Functions . 31-3

Use of en, du, ex, entry, during, and exit for Data and Event Names Being
Disallowed in a Future Version . 31-4

Support for Machine-Parented Events Being Removed in a Future Version
. 31-4

R2008b

Support for Embedding Simulink Function-Call Subsystems in a Stateflow
Chart . 32-2

Support for Using Enumerated Data Types in a Stateflow Chart 32-2

New Alignment, Distribution, and Resizing Commands for Stateflow
Charts . 32-2

Unified Simulation and Embeddable Code Generation Options for
Stateflow Charts and Truth Table Blocks . 32-2

GUI Changes in Simulation Options for Nonlibrary Models 32-2
GUI Changes in Simulation Options for Library Models 32-7
GUI Enhancements in Real-Time Workshop Code Generation Options for

Nonlibrary Models . 32-10
GUI Changes in Real-Time Workshop Code Generation Options for Library

Models . 32-12
Mapping of Target Object Properties to Parameters in the Configuration

Parameters Dialog Box . 32-17
New Parameters in the Configuration Parameters Dialog Box for Simulation

and Embeddable Code Generation . 32-19

New Pattern Wizard for Consistent Creation of Logic Patterns and
Iterative Loops . 32-24

Support for Initializing Vectors and Matrices in the Data Properties
Dialog Box . 32-24

Change in Default Mode for Ordering Parallel States and Outgoing
Transitions . 32-24

Optimized Inlining of Code Generated for Stateflow Charts 32-24

xix

More Efficient Parsing for Nonlibrary Models . 32-25

Change in Casting Behavior When Calling MATLAB Functions in a Chart
. 32-25

Ability to Specify Continuous Update Method for Output Data 32-25

Use of Output Data with Change Detection Operators Disallowed for
Initialize-Outputs-at-Wakeup Mode . 32-25

Parsing a Stateflow Chart Without Simulation No Longer Detects
Unresolved Symbol Errors . 32-25

Generation of a Unique Name for a Copied State Limited to States
Without Default Labels . 32-26

New Configuration Set Created When Loading Nonlibrary Models with an
Active Configuration Reference . 32-26

R2008a+

Bug Fixes

R2008a

Support for Data with Complex Types . 34-2

Support for Functions with Multiple Outputs . 34-2

Bidirectional Traceability for Navigating Between Generated Code and
Stateflow Objects . 34-2

New Temporal Logic Notation for Defining Absolute Time Periods 34-2

New temporalCount Operator for Counting Occurrences of Events 34-2

Using a Specific Path to a State for the in Operator 34-2

Enhanced MISRA C Code Generation Support . 34-3

Enhanced Folder Structure for Generated Code . 34-3

Code Optimization for Simulink Blocks and Stateflow Charts 34-3

New fitToView Method for Zooming Objects in the Stateflow Editor . . . 34-3

xx Contents

Generation of a Unique Name for a Copied State 34-3

New Font Size Options in the Stateflow Editor . 34-3

New Fixed-Point Details Display in the Data Properties Dialog Box 34-4

“What’s This?” Context-Sensitive Help Available for Simulink
Configuration Parameters Dialog . 34-4

Specifying Scaling Explicitly for Fixed-Point Data 34-4

Use of Data Store Memory Data in Entry Actions and Default Transitions
Disallowed for Execute-at-Initialization Mode 34-5

Enhanced Warning Message for Target Hardware That Does Not Support
the Data Type in a Chart . 34-5

Detection of Division-By-Zero Violations When Debugger Is Off 34-5

R2007b+

Bug Fixes

R2007b

Enhanced Continuous-Time Support with Zero-Crossing Detection 36-2

New Super Step Feature for Modeling Asynchronous Semantics 36-2

Support for Inheriting Data Properties from Simulink Signal Objects Via
Explicit Resolution . 36-2

Common Dialog Box Interface for Specifying Data Types in Stateflow
Charts and Simulink Models . 36-3

Support for Animating Stateflow Charts in Simulink External Mode . . . 36-3

Support for Target Function Library . 36-4

Support for Fixed-Point Parameters in Truth Table Blocks 36-4

Support for Using Custom Storage Classes to Control Stateflow Data in
Generated Code . 36-4

Loading 2007b Stateflow Charts in Earlier Versions of Simulink Software
. 36-4

xxi

Bug Fixed for the History Junction . 36-4

R2007a+

Bug Fixes

R2007a

New Operators for Detecting Changes in Data Values 38-2

Elimination of “goto” Statements from Generated Code 38-2

R2006b

Support for Mealy and Moore Charts . 39-2

New Structure Data Type Provides Support for Buses 39-2

Custom Integer Sizes . 39-2

R2006a+

No New Features or Changes

R2006a

Option to Initialize Outputs When Chart Wakes Up 41-2

Ability to Customize the Stateflow User Interface 41-2

Using the MATLAB Workspace Browser for Debugging Stateflow Charts
. 41-2

xxii Contents

Chart and Truth Table Blocks Require C Compiler for 64-Bit Windows
Operating Systems . 41-2

R14SP3

Data Handling . 42-2
Sharing Global Data Between Simulink Models and Stateflow Charts . . . 42-2
Enhancements to Data Properties Dialog Box . 42-2

Truth Table Enhancements . 42-2
Using Embedded MATLAB Action Language in Truth Tables 42-2
Embedded MATLAB Truth Table Block in Simulink Models 42-2

API Enhancements . 42-3
Retrieving Object Handles of Selected Stateflow Objects 42-3
Default Case Handling in Generated Code . 42-3

Greater Usability . 42-3
Specifying Execution Order of Parallel States Explicitly 42-3
Hyperlinking Simulink Subsystems from Stateflow Events 42-3
Warnings for Transitions Looping Out of Logical Parent 42-3
Differentiating Syntax Elements in the Stateflow Action Language 42-5
Stateflow Chart Notes Click Function . 42-5
Chart Viewing Enhancements . 42-5

R14SP2

User-Specified Transition Execution Order . 43-2

Enhanced Integration of Stateflow Library Charts with Simulink Models
. 43-2

Stateflow Charts and Embedded MATLAB Functions Support Simulink
Data Type Aliases . 43-2

Fixed-Point Override Supported for Library Charts 43-2

xxiii

R2022a

Version: 10.6

New Features

Bug Fixes

Version History

1

Use Symbols pane while writing MATLAB function code
Starting in R2022a, you can view the Symbols pane while you write MATLAB® function code. In
previous releases, you could use the Symbols pane to edit MATLAB function variables only from the
Stateflow Editor.

The Symbols pane displays the variables that you define in the signature label for the MATLAB
function. After you make changes to the code, refresh the contents of the Symbols pane by saving
the model, updating the model, returning to the chart canvas, or clicking a different pane.

Manage Stateflow breakpoints in the Simulink Breakpoints List pane
Starting in R2022a, you can use the new breakpoints list in the Simulink® Editor to manage
breakpoints in your Stateflow chart. In previous releases, these breakpoints appear only in the
Stateflow Breakpoints and Watch window. For more information, see “Unified breakpoint list in the
Simulink Editor for debugging” (Simulink).

Expanded string support for charts that use MATLAB as the action
language
When using MATLAB as the action language, you can include:

• String types with the operators: forward, hasChangedFrom, and hasChangedTo.
• SDI with string type data. For more information about SDI, see Simulation Data Inspector

(Simulink).
• String type data in Truth Table blocks.
• String type data in State Transition Table blocks.

Additionally, string truncation in charts that use MATLAB as the action language is on par with charts
that use C as the action language.

Repeat data names at different levels of the chart hierarchy
Starting in R2022a, Stateflow charts that use MATLAB as the action language support data objects
with the same name at different levels of the chart hierarchy. For example, you can now use the name
of a chart symbol as an argument or return value for a graphical function, MATLAB function, or truth
table. In previous releases, using the same data name in different levels of the chart hierarchy results
in a compile-time error.

Export chart-level Simulink functions
Starting in R2022a, you can export chart-level Simulink functions in Stateflow charts by enabling the
chart property Export chart level functions. In previous releases, enabling this property in a chart
that contains chart-level Simulink functions results in a run-time error.

Convert states that contain supertransitions to atomic subcharts
You can now convert states to atomic subcharts, even when supertransitions cross the boundary of
the state. Converting a state to an atomic subchart automatically replaces any supertransition into or

R2022a

1-2

out of the state with a transition that connects to an entry or exit port. Entry and exit ports enable
your chart to transition across boundaries in the Stateflow hierarchy while isolating the logic for
entering and exiting the atomic subchart. For more information, see “Convert a State or Normal
Subchart to an Atomic Subchart”, “Create Entry and Exit Connections Across State Boundaries”, and
“Isolate the Transition Logic for Entering and Exiting an Atomic Subchart”.

Note that you cannot undo the conversion to an atomic subchart. You can convert the atomic subchart
back to a normal subchart, as described in “Convert an Atomic Subchart to a Normal Subchart”, but
this action does not replace the new entry and exit ports with supertransitions.

Convert machine-parented data to chart-parented data store memory
Use the Upgrade Advisor check “Check for machine-parented data” (Simulink) to convert machine-
parented data to chart-parented data of scope Data Store Memory. For more information, see
“Consult the Upgrade Advisor” (Simulink). Machine-parented data will no longer be supported in a
future release.

Functionality being removed or changed
Use strong data typing with Simulink I/O chart property has been removed
Errors

In R2022a, the chart property Use strong data typing with Simulink I/O has been removed. Data
types of input signals to charts and state transition tables must now match the type of the
corresponding Stateflow data object. Otherwise, a type mismatch error occurs.

1-3

R2021b

Version: 10.5

New Features

Bug Fixes

Version History

2

Create entry and exit connections across hierarchy boundaries
In R2021b, you can now use ports and junctions to create connections across boundaries in the
Stateflow hierarchy. Entry and exit ports improve componentization by isolating the transition logic
for entering and exiting states. Unlike supertransitions, they can be used in atomic subcharts.

In the Stateflow Editor, entry and exit ports appear as arrows on the boundary of a state or subchart.
Each port has a matching junction that marks the entry or exit point inside the state or subchart. The
entry junction icon and the exit junction icon indicate the junction. A transition path that leads to
an entry port continues along the transition connected to the matching entry junction. Similarly, a
transition path that leads to an exit junction continues along the transition connected to the matching
exit port.

For example, in the model sf_boiler, the exit port labeled turnOff represents the exit connection
out of the subchart On.

In the subchart, the transition path leading to the exit junction defines the logic for exiting the
subchart. In this example, the function warm must evaluate to true on two consecutive time steps
before the chart makes the transition out of the On state.

For more information on entry and exit ports, see Create Entry and Exit Connections Across State
Boundaries. For more information about this example, see Model Bang-Bang Temperature Control
System. For other examples that use entry and exit ports, see Isolate the Transition Logic for
Entering and Exiting an Atomic Subchart and Model a Launch Abort System.

Detect rising and falling edges in data expressions
Stateflow charts in Simulink models can now detect rising and falling edges in data expressions. The
new edge detection operators take scalar-valued expressions and return a Boolean output.

R2021b

2-2

https://www.mathworks.com/help/releases/R2021b/stateflow/ug/create-entry-and-exit-connections-across-hierarchy-boundaries.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/create-entry-and-exit-connections-across-hierarchy-boundaries.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/bang-bang-control-using-temporal-logic.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/bang-bang-control-using-temporal-logic.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/transition-logic-for-atomic-subcharts.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/transition-logic-for-atomic-subcharts.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/modeling-a-launch-abort-system.html

Operator Syntax Description Example
crossin
g

tf =
crossing(express
ion)

Returns 1 (true) if:

• The previous value of
expression was positive
and its current value is zero
or negative.

• The previous value of
expression was zero and
its current value is nonzero.

• The previous value of
expression was negative
and its current value is zero
or positive.

Otherwise, the operator returns
0 (false).

This operator imitates the
behavior of a Trigger (Simulink)
block with Trigger Type set to
either.

Transition out of state if the
value of the input data signal
crosses a threshold of 2.5.

[crossing(signal-2.5)]

The edge is detected when the
value of the expression
signal-2.5 changes from
positive to negative, from
negative to positive, from zero
to nonzero, or from nonzero to
zero.

falling tf =
falling(expressi
on)

Returns 1 (true) if:

• The previous value of
expression was positive
and its current value is zero
or negative.

• The previous value of
expression was zero and
its current value is negative.

Otherwise, the operator returns
0 (false).

This operator imitates the
behavior of a Trigger (Simulink)
block with Trigger Type set to
falling.

Transition out of state if the
value of the input data signal
falls below a threshold of 2.5.

[falling(signal-2.5)]

The falling edge is detected
when the value of the
expression signal-2.5
changes from positive to
negative, from positive to zero,
or from zero to negative.

2-3

https://www.mathworks.com/help/releases/R2021b/stateflow/ref/crossing.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ref/crossing.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/trigger.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ref/falling.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/trigger.html

Operator Syntax Description Example
rising tf =

rising(expressio
n)

Returns 1 (true) if:

• The previous value of
expression was negative
and its current value is zero
or positive.

• The previous value of
expression was zero and
its current value is positive.

Otherwise, the operator returns
0 (false).

This operator imitates the
behavior of a Trigger (Simulink)
block with Trigger Type set to
rising.

Transition out of state if the
value of the input data signal
rises above a threshold of 2.5.

[rising(signal-2.5)]

The rising edge is detected
when the value of the
expression signal-2.5
changes from negative to
positive, from negative to zero,
or from zero to positive.

Like the Trigger block, these operators detect a single edge when the expression argument
changes value from positive to zero to negative or from negative to zero to positive at three
consecutive time steps. The edge occurs when the value of the expression becomes zero.

The arguments to these operators can combine input data, constants, nontunable parameters,
continuous-time local data, and state data from Simulink based states. Arguments can include
addition, subtraction, and multiplication of scalar variables, elements of a matrix, fields in a
structure, or any valid combination of structure fields and matrix indices. Indices can be numbers or
expressions that evaluate to a constant integer. For more information, see Detect Changes in Data
and Expression Values.

MATLAB Function block editor in Stateflow window
Starting in R2021b, the MATLAB Function Block Editor opens in the same Stateflow window as the
parent chart of the MATLAB Function block. Previously, when you opened a function in the MATLAB
Function Block Editor, the editor opened in the MATLAB window. The new MATLAB Function Block
Editor enables you to:

• Easily navigate from the MATLAB function back to the parent chart in the same window.
• Access and edit properties of the chart while viewing the MATLAB function on the canvas.
• Run and step the chart while debugging the MATLAB function in the MATLAB Function block

debugger.
• Edit your function using the tools that were previously available in the MATLAB Function Block

Editor.

R2021b

2-4

https://www.mathworks.com/help/releases/R2021b/stateflow/ref/rising.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/trigger.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/detecting-changes-in-data-values.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/detecting-changes-in-data-values.html

To open the editor, in a Stateflow chart, double-click a MATLAB Function block. The Function tab
opens and the canvas shows the MATLAB function. To navigate back to the chart, use the navigation

buttons .

Index and assign values to arrays of structures in C action language
Starting in R2021b, you can use arrays of structures in Stateflow charts and state transition tables
that use C as the action language. To access and modify the contents of an array of structures, use
dot notation and numeric indices. For example, this list illustrates how to access the elements of an
array of structures by using zero-based indexing delimited by brackets:

• structArray[0] — First element of the array of structures structArray
• structArray[0].a — Field a of the structure structArray[0]
• structArray[0].a.b — Field b of the substructure structArray[0].a
• structArray[0].a.b[2][3] — Element in the third row, fourth column of the field b of

substructure structArray[0].a

For more information on accessing and modifying the contents of a structure or an array of
structures, see Index and Assign Values to Stateflow Structures.

String support for charts that use MATLAB as the action language
You can create and manipulate string data in a Stateflow chart that uses MATLAB as the action
language. The string data type is compatible with strings in MATLAB and Simulink. For more
information about using string data, see Manage Textual Information by Using Strings.

Navigate using the Stateflow miniature map
When you zoom in or out of your Stateflow chart, a miniature map appears in the bottom left hand
corner of the Stateflow editor. As you zoom or navigate your Stateflow chart, the blue square will
move on the mini map, indicating your location relative to the entire chart.

2-5

https://www.mathworks.com/help/releases/R2021b/stateflow/ug/structure-operations.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/string-data-in-charts.html

For more information, see Zoom and Navigate with the Miniature Map.

Functionality being removed or changed
Stateflow charts no longer support creating machine-parented data
Errors

Starting in R2021b, Stateflow charts do not support creating machine-parented data. In the Model
Explorer, you cannot select the Add Data button or the Add > Data menu option at the Stateflow
machine level. In addition, calling the Stateflow.Data function with arguments of type
Stateflow.Machine now results in an error.

The presence of machine-parented data in a model prevents the reuse of generated code and other
code optimizations. This type of data is also incompatible with many Simulink and Stateflow features.
To make Stateflow data accessible to other charts and blocks in a model, use data store memory. For
more information, see Best Practices for Using Data in Charts and Access Data Store Memory from a
Chart.

Machine-parented data will no longer be supported in a future release.

Stateflow truth tables no longer generate content

Starting in R2021b, you no longer need to generate content for Stateflow truth tables to set
breakpoints and debug. For more information on setting break points in a truth table, see Debug
Errors in a Truth Table.

R2021b

2-6

https://www.mathworks.com/help/releases/R2021b/stateflow/ug/editor-operations.html#mw_6cca542b-f20e-4970-bd66-852027c76f06
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/adding-data.html#brjgifa
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/access-data-store-memory-from-a-chart.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/access-data-store-memory-from-a-chart.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/debugging-a-truth-table.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/debugging-a-truth-table.html

R2021a

Version: 10.4

New Features

Bug Fixes

3

Edit the color of data syntax highlighting
In Stateflow charts, truth tables, and state transition tables, you can edit the color of data syntax
highlighting based on its scope. This highlighting can be applied to:

• Local data
• Constant data
• Inputs
• Outputs
• Parameters
• Data Store Memory data

To change the color of a specific data, in the Format tab, select Style > Syntax Highlighting. For
more information, see Stateflow Editor Operations.

Add Stateflow chart behavior to an architecture component
In R2021a, you can add Stateflow chart behavior to a component in a System Composer™
architecture model. Describe component behavior using state charts with Stateflow to represent
modes of operation.

• Add a Stateflow chart behavior to your component.

• The new Stateflow chart behavior for a component is embedded within the same .slx file as the
parent architecture model, reducing the need for multiple model files.

For more information, see Add Stateflow Chart Behavior to Architecture Component (System
Composer).

64-bit integer type support for parameters
Parameters in Stateflow charts can now be set as 64-bit integer data. For more information, see
Differences Between MATLAB and C as Action Language Syntax.

R2021a

3-2

https://www.mathworks.com/help/releases/R2021a/stateflow/ug/editor-operations.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/add-state-chart-behavior-with-stateflow.html
https://www.mathworks.com/help/releases/R2021a/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html

Half-precision data type support
Stateflow charts that use MATLAB as the action language can now use half-precision type data. A
half-precision data type occupies 16 bits of memory, but its floating-point representation enables it to
handle wider dynamic ranges than integer or fixed-point data types of the same size. For more
information, see The Half-Precision Data Type in Simulink (Fixed-Point Designer).

Multidimensional variable support for row-major arrays
In charts that use C as the action language, you can use multidimensional custom code variables. To
implement row-major as the default array layout for functions, open the Configuration Parameters
dialog box. In the Simulation Target pane, click Import custom code. In the Code Generation >
Interface pane, under the Data exchange interface section, ensure that Array layout is set to
Row-major.

Reverse transitions
If a Stateflow transition can be reversed, you can reverse the transition without deleting your
transition and attached conditions or actions. To reverse a transition in a Stateflow chart, hover over
the transition. Move the cursor over the ellipses that appear above the transition and click the

reverse transition button .

Insert components without leaving the Stateflow canvas
In R2021a, you can use quick insert to add Stateflow components to the Stateflow canvas. To insert a
component, double-click the Stateflow canvas and type the name of the component you want to add.
A list appears with possible components to add to your Stateflow chart.

3-3

https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/half-precision-in-simulink.html

R2021a

3-4

R2020b

Version: 10.3

New Features

Bug Fixes

Version History

4

Visualize chart behavior with the Activity Profiler
The Activity Profiler visually represent the usage of states, transitions, and functions in your
Stateflow chart. With the Activity Profiler enabled, the states, transitions, and functions in your chart
are highlighted after simulation to show how often Stateflow accessed the object during simulation.

You can also view this data in a table by using the Activity Profiler pane, which appears when you
enable heat maps.

To enable the Activity Profiler, in the Stateflow Editor, in the Debug tab, click Activity Profiler. For
more information, see Visualize Chart Execution with the Activity Profiler.

Design state machines to control MATLAB apps
By using the new keyword this, you can establish a bidirectional connection between an external
MATLAB function or app and a Stateflow chart in a Simulink model. With this connection, you can use
a chart to define the behavior of a MATLAB app created in App Designer. The chart monitors your
interactions with the app and enables or disables app widgets accordingly. For examples that
illustrate this workflow, see Model a Power Window Controller and Simulate a Media Player.

Version History
If you have functions or variables named this, change their name to avoid conflicting with the
keyword.

Connect dashboard blocks to Stateflow
In R2020b, you can connect Dashboard blocks to Stateflow, including:

• Charts
• States
• Simulink based states
• Subcharts
• Atomic subcharts

Dashboard blocks can observe the self, child, and leaf activity of the connected state or chart.
Additionally, you can connect Dashboard blocks to Stateflow local and output data by selecting states
or transitions from the Stateflow Editor. To connect a chart to Dashboard blocks, double-click the
block in the Simulink Editor and select the Stateflow chart. For more information on using Dashboard
blocks, see Control Simulations with Interactive Displays (Simulink).

Execute standalone charts saved in earlier versions of Stateflow
You can now share a Stateflow standalone chart that was saved in R2020a with collaborators that
have R2020b. If your collaborators have the same or a later version of MATLAB than you have, they

R2020b

4-2

https://www.mathworks.com/help/releases/R2020b/stateflow/ug/use-heat-maps-to-visualize-content-implementation.html
https://www.mathworks.com/help/releases/R2020b/stateflow/ref/this.html
https://www.mathworks.com/help/releases/R2020b/stateflow/ug/modeling-a-power-window-controller.html
https://www.mathworks.com/help/releases/R2020b/stateflow/ug/model-media-player-using-strings.html
https://www.mathworks.com/help/releases/R2020b/simulink/control-and-visualize-simulations-with-interactive-displays.html

can execute your standalone charts as MATLAB objects without opening the Stateflow Editor. For
more information, see Share Standalone Charts.

Version History
To run standalone charts that you saved in R2019a or R2019b, your collaborators must have the same
version of MATLAB.

Programmatically extract actions from states and transitions
The API objects Stateflow.State and Stateflow.Transition now have read-only properties
that help you extract the text of state and transition actions.

API Object Property Type Description
Stateflow.
State

DuringAction Character
vector

Text in the during action in this state. This property is
not supported in Moore charts.

EntryAction Character
vector

Text in the entry action in this state. This property is
not supported in Moore charts.

ExitAction Character
vector

Text in the exit action in this state. This property is
not supported in Moore charts.

MooreAction Character
vector

Text in the action in this state. This property is
supported only in Moore charts.

OnAction Cell array of
character
vectors

Text in the on actions in this state, parsed as a cell
array of this form:

{'trigger1','action1',...,'triggerN','actionN'}

This property is not supported in Moore charts.
Stateflow.
Transition

Condition Character
vector

Text in the condition on this transition.

ConditionAction Character
vector

Text in the condition action on this transition.

TransitionAction Character
vector

Text in the transition action on this transition.

Trigger Character
vector

Text in the trigger on this transition.

The values of these properties are set by the LabelString property for the state or transition. For
more information, see Specify Labels in States and Transitions Programmatically.

Multidimensional custom code function support for row-major
In charts that use C as the action language, you can include data and message inputs for
multidimensional custom code functions with row-major as the array layout. To implement row-major
as the default array layout for inputs in functions, open the Configuration Parameters dialog box. In
the Simulation Target pane, click Import custom code and set Default function array layout to
Row-major.

4-3

https://www.mathworks.com/help/releases/R2020b/stateflow/ug/create-stateflow-chart-objects.html#mw_4a31edbd-ef7a-4ff9-be39-471f3a245da5
https://www.mathworks.com/help/releases/R2020b/stateflow/api/properties-and-methods-sorted-by-chart-object.html#f20-6385
https://www.mathworks.com/help/releases/R2020b/stateflow/api/properties-and-methods-sorted-by-chart-object.html#f20-13392
https://www.mathworks.com/help/releases/R2020b/stateflow/api/entering-multiline-labels.html

You can also specify individual functions for row-major array layout. In the Simulation Target pane,
click Specify by function. From this window, you can add or remove functions and specify their
individual array layout.

Use the Sequence Viewer in the toolstrip to visualize message flow,
function calls, and state transitions
The Sequence Viewer in the toolstrip allows you to visualize messages, functions calls, and state
transitions without using the Sequence Viewer block in your model.

To activate logging, on the Simulation tab, in the Prepare section, select Log Events.

To visualize the simulation results, go to the Review Results section and select the Sequence Viewer.

Generated default switch cases determined alphabetically
In code generated from Stateflow charts that include exclusive (OR) states, the default case of
switch expressions corresponds to the child state whose name is last in alphabetical order.

R2020b

4-4

R2020a

Version: 10.2

New Features

Bug Fixes

Version History

5

Generate code for variant software configurations
With variant transitions, you can create Stateflow charts in Simulink models that generate code that
may be used in a variety of different software situations. Variant transitions use chart parameters in a
condition and attach to states within your chart that are variations from the core chart configuration.
To change a transition to a variant transition, click the transition that you want to change. In the
Transition tab, select Variant Transition. The transition appears on the chart with a # symbol,
which indicates that the transition is a variant transition.

Once a variant transition is implemented in your chart, the code that you generate may include
either:

• The portions of the code that are currently enabled.
• Preprocessor conditional statements that guard different configurations.

To generate the preprocessor conditional statement, open the Property Inspector. In the Stateflow
editor, on the Modeling tab, under Design, select Property Inspector. Under Advanced, select
Generate preprocessor conditionals.

64-bit integer type support for charts that use MATLAB as the action
language
Stateflow charts that use MATLAB as the action language now support 64-bit integer data. Charts
implement int64 and uint64 data types as fixed-point numbers with a word length of 64 bits and a
fraction length of 0. For more information, see Differences Between MATLAB and C as Action
Language Syntax .

Cache and report compilation warnings
In R2020a, Stateflow caches chart warnings and displays them when you update an unmodified chart.

Multidimensional array indexing for constant, Data Store Memory, and
message data
If you have Embedded Coder®, you can generate code that preserves the multidimensionality of
Stateflow constant data, Data Store Memory data, and messages without flattening the data as one-
dimensional arrays. For example, consider this matrix:

By default, with row-major layout, the code generator flattens the matrix to a one-dimensional array:

R2020a

5-2

https://www.mathworks.com/help/releases/R2020a/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html

{1, 2, 3, 4, 5, 6}

To preserve the dimensions of your array, use the Embedded Coder Code Mappings editor. For more
information, see Preserve Dimensions of Multidimensional Arrays in Generated Code (Embedded
Coder).

Now you can implement the matrix to a two-dimensional array:

{{1, 2, 3}, {4, 5, 6}}

To preserve Stateflow data array dimensions, you must first select row-major layout. For more
information, see Select Array Layout for Matrices in Generated Code.

Absolute-time temporal logic operators for standalone charts in
MATLAB
In standalone Stateflow charts in MATLAB, you can now use the operators after, at, and every to
wake up the chart based on absolute-time conditions. Standalone charts define absolute-time
temporal logic in terms of wall-clock time, which is limited to 1 millisecond precision. For more
information, see Control Chart Execution by Using Temporal Logic.

Event queuing semantics in standalone charts in MATLAB
In R2020a, standalone Stateflow charts in MATLAB use new queuing semantics when a chart is busy
processing another operation. If a chart is busy when it receives an input event or an implicit event
associated with an absolute-time temporal logic operator, the chart queues the event. The event is
executed when the current step is completed. You can specify the size of the event queue by setting
the configuration option -eventQueueSize when you create the chart object. For more information,
see Events in Standalone Charts.

Version History
Execution behavior has changed when a standalone chart receives an event while it is processing
another operation.

Before R2020a R2020a
New events interrupt the current activity of the
chart. When the chart finishes executing the new
event, it returns to the activity that was taking
place before the interruption. The results of
processing the new event can conflict with the
action that was taking place before the event was
generated, leading to unexpected behavior. For
example, a chart can finish executing the
interrupted during actions of a state after the
state becomes inactive.

New events are queued and do not interrupt the
current activity of the chart. The chart executes
events in the order they are received.

Export standalone Stateflow charts for execution in earlier versions of
MATLAB
You can now export a standalone chart to a format used by an earlier version of Stateflow so that
collaborators with earlier versions of the software can use your charts. You can only export back to

5-3

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/preserve-dimensions-of-multidimensional-arrays-in-generated-code.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ug/row-major-and-multidimensional-layout.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ref/after.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ref/at.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ref/every.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ug/how-events-drive-chart-execution.html#mw_5eb311dc-c2d5-43c3-a199-9a5174bded16

R2019a and later releases. To complete the export process, you need access to the versions of
Stateflow from which and to which you are exporting. Using the later version of Stateflow, open the
standalone chart and select Save > Previous Version. Alternatively, you can export the chart by
calling the function Stateflow.exportToVersion. Then, using the earlier version of Stateflow,
open and resave the exported chart. For more information, see Share Standalone Charts.

Functionality being removed or changed
Behavior in charts with 64-bit fixed-point type inputs could change
Behavior change

The Simulink data type fixdt(1,64,0) was previously shown as sfix64 on the Simulink canvas.
When inputting this signal into a Stateflow chart that uses MATLAB as the action language it was
treated as an embedded.fi object internally regardless of the Treat these inherited Simulink
signal types as fi objects setting.

In R2020a, Stateflow now treats these inputs as either int64 or an embedded.fi object depending
on the setting. When Treat these inherited Simulink signal types as fi objects is set to Fixed-
point, fixdt(1,64,0) is treated as an int64 data type. When Treat these inherited Simulink
signal types as fi objects is set to Fixed-point & Integer, fixdt(1,64,0) is treated as an
embedded.fi object.

This change may lead to a difference in chart behavior when set to Fixed-point.

To preserve the behavior of previous releases in your Stateflow chart, use the function
cast64BitIntToFi.

This behavior also applies to ufix64 data types.

R2020a

5-4

https://www.mathworks.com/help/releases/R2020a/stateflow/ref/stateflow.exporttoversion.html
https://www.mathworks.com/help/releases/R2020a/stateflow/ug/create-stateflow-chart-objects.html#mw_4a31edbd-ef7a-4ff9-be39-471f3a245da5

R2019b

Version: 10.1

New Features

Bug Fixes

Version History

6

Stateflow Onramp: Self-paced, interactive tutorial for getting started
with Stateflow
To help you get started quickly with Stateflow basics, Stateflow Onramp provides a self-paced,
interactive tutorial. After completing Stateflow Onramp, you will be able to use the Stateflow
environment and build Stateflow charts based on real-world examples.

To open Stateflow Onramp, on the Simulink Start Page, you can select the
button under Learn.

To teach concepts incrementally, Stateflow Onramp uses hands-on exercises.

You receive automated assessments and feedback after submitting tasks.

R2019b

6-2

Your progress is saved if you exit the application, so you can complete the training in multiple
sessions.

Stateflow Onramp covers these topics:

• State machines
• Creating state charts
• Stateflow symbols and data
• Chart actions
• Chart execution
• Flow charts
• Functions in Stateflow
• Chart hierarchy

Stateflow Onramp helps you practice what you learn with these projects:

• Robotic Vacuum
• Robotic Vacuum Driving Modes

Simulink Toolstrip: Access Stateflow capabilities by using contextual
tabs
In R2019b, the Simulink Toolstrip replaces Simulink menu bar. For more details, see Simulink
Toolstrip: Access and discover Simulink capabilities when you need them (Simulink). The location of
several Stateflow features and buttons are located in contextual tabs. The Simulink Toolstrip
contextual tabs appear only when you need them.

6-3

https://www.mathworks.com/help/releases/R2019b/simulink/release-notes.html#mw_6f1418b2-cde7-43e7-8b63-44437b0960e4
https://www.mathworks.com/help/releases/R2019b/simulink/release-notes.html#mw_6f1418b2-cde7-43e7-8b63-44437b0960e4

• To access the State Chart tab, click a Stateflow chart in a Simulink model.
• To access the State tab, click a state in a Stateflow chart.

Stateflow Editor Changes

• “Mapping from Simulink Editor to the Simulink Toolstrip” on page 6-4
• “Chart Menu” on page 6-4

Mapping from Simulink Editor to the Simulink Toolstrip

The following tables list the new Simulink Toolstrip items that are different from the Stateflow Editor
Chart menu bar items. Many of the features and options that were previously hidden within the
toolbar menus are now directly available from tabs on the Simulink Toolstrip. For a complete mapping
of all Simulink Editor menu bar items, see Simulink Editor Changes.

Chart Menu

Menu Bar Item Toolstrip Equivalent
Parse Chart Debug > Update Model > Update Chart
Refresh Blocks (Ctrl+K)
Group & Subchart >

• Group
• Subchart
• Atomic Subchart

Select a state. State >

• Group
• Subchart
• Atomic Subchart

Add Inputs & Outputs >

• Data Input From Simulink
• Data Output To Simulink
• Event Input From Simulink
• Event Output To Simulink
• Message Input From Simulink
• Message Output To Simulink

Modeling > Design Data gallery >

• Data Input
• Data Output
• Event Input
• Event Output
• Message Input
• Message Output

Add Other Elements >

• Parameter
• Local Data
• Constant
• Data Store Memory
• Local Event
• Local Message

Modeling > Design Data gallery >

• Parameter
• Local Data
• Constant
• Data Store
• Event
• Message

Add Pattern In Chart Modeling > Pattern
Save Pattern Modeling > Pattern > Save As Pattern
Create Subchart from Selection Select a state. Modeling > Subchart Selection
Create Superstate from Selection Select a state. Modeling > Add Superstate

R2019b

6-4

https://www.mathworks.com/help/releases/R2019b/simulink/release-notes.html#mw_28f1a249-0d05-4280-b037-96b435b15cae

Menu Bar Item Toolstrip Equivalent
Create Subcharted Box from Selection Select a state. Modeling > Subcharted Box
Create Box from Selection Select a state. Modeling > Add Box
Format > Font Style Format
Format > Font Size Format
Format > Text Alignment Double-click the text. Use the pop-up menu.
Format >

• Enable TeX Commands
• Shadow
• Arrowhead Size
• Junction Size
• .Content Preview

Format >

• Select annotation. Enable Equations
• Select text. Shadow
• Select transition. Arrowhead drop-down.
• Select junction. Junction drop-down.
• Select subchart or atomic subchart. Content

Preview.
Arrange Select the states to be arranged.Format >

• Align
• Distribute
• Match

Library Link >

• Go to Library Block
• Disable Link
• Resolve Link
• View Changes

Select library state. State >

• Go to Library
• Disable Link
• Restore Link
• View Changes

Decomposition >

• Exclusive
• Parallel

Modeling > Decomposition

• Exclusive
• Parallel

Execution Order Select parallel state. Subchart > Execution
Order

Subchart Mappings Select atomic subchart. Atomic Subchart >
Mappings

Properties Modeling > State Properties

6-5

Flow Charts from MATLAB: Visualize MATLAB scripts and functions as
Stateflow flow charts
In standalone Stateflow charts, you can use the Pattern Wizard to transform your MATLAB code into
flow charts and graphical functions. Supported patterns for conversion include:

• if, if-else, and other nested decision statements
• for and while loops
• switch statements

For more information, see Convert MATLAB Code into Stateflow Flow Charts.

64-bit integer types int64 and uint64
Stateflow charts that use C as the action language now support 64-bit integer data. Charts implement
int64 and uint64 data types as fixed-point numbers with a word length of 64 bits and a fraction
length of 0.

• int64 is an alias type for fixdt(1,64,0).
• uint64 is an alias type for fixdt(0,64,0).

For more information, see Fixed-Point Data in Stateflow Charts.

Change detection in standalone Stateflow charts
Standalone Stateflow charts now support the operators hasChanged, hasChangedFrom, and
hasChangedTo. You can use these operators to detect changes in the values of local data when you
execute a chart in MATLAB.

Debugging enhancements for standalone Stateflow charts in MATLAB
While debugging standalone charts, you can now select different configurations of breakpoint types:

• States support On State Entry, During State, and On State Exit breakpoints.
• Transitions support When Transition is Tested and When Transition is Valid

breakpoints.

Conditional breakpoints are also supported. To specify a condition for the breakpoint, use a valid
MATLAB expression that combines numerical values and Stateflow data objects that are in scope at
the breakpoint. For more information, see Debug a Standalone Stateflow Chart.

Enhanced support of row-major data in Stateflow blocks
Use row-major array layout in Stateflow blocks to more easily and efficiently integrate your Simulink
model with row-major data and algorithms. Row-major layout is now supported in Stateflow charts,
state transition tables, and truth table blocks, including:

• Charts that use MATLAB as the action language.
• Charts that contain truth table functions and MATLAB functions.

R2019b

6-6

https://www.mathworks.com/help/releases/R2019b/stateflow/ug/convert-MATLAB-to-flow-chart.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ug/what-is-fixed-point-data.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ref/haschanged.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ref/haschangedfrom.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ref/haschangedto.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ug/debug-stateflow-chart-objects.html

• Charts that use custom C code where all custom variables and arguments to custom functions are
scalars, vectors, or structures of scalars and vectors. Specify the size of an n-element vector as n,
and not as [n 1] or [1 n].

For more information, see Select Array Layout for Matrices in Generated Code.

External receiving queues for input messages
Input messages can now connect to receiving queues that you configure outside of a Stateflow chart.
When you disable the Use Internal Queue property for an input message, you can connect the
message input port to:

• A Queue block that manages an external queue in your Simulink model
• A root-level Inport block that enables messages to cross the model boundary

For more information, see Use Internal Queue.

Message delivery in debugging mode
While debugging a Stateflow chart, you can test the design of the chart by sending local and output
messages. For example, suppose that M is a local message. While the simulation is paused at a
breakpoint, you can change the value of the data field and send the message to its local queue. In the
MATLAB Command Window, enter:

M = 5;
send(M);

To see the effects of sending the message, advance to the next step of the simulation.

Follow these rules when sending messages while debugging a chart:

• To read or write to the message data field of a valid message, use the name of the message object.
Do not use dot notation syntax.

• You can send a message from the debugging prompt only when the chart explicitly sends the
message by calling the send operator.

• You cannot send input messages from the debugging prompt.

For more information, see Send Messages by Using the Debugging Prompt.

Propagation of symbolic dimensions for Stateflow data
When you select the model configuration parameter Allow symbolic dimension specification,
charts that use C as the action language can propagate the symbolic dimensions of Stateflow data
throughout the model. If you have Embedded Coder, the symbolic dimensions go into the generated
code for ERT targets. Specify the size of the symbolic dimensions by using Simulink parameters with
one of these storage classes:

• Define or ImportedDefine with a specified header file
• CompilerFlag
• A user-defined custom storage class that defines data as a macro in a specified header file

For more information, see Propagate Symbolic Dimensions of Stateflow Data.

6-7

https://www.mathworks.com/help/releases/R2019b/stateflow/ug/row-major-and-multidimensional-layout.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/queue.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/inport.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ug/set-message-properties.html#mw_701b4cdb-4cb0-45af-96a2-ef8c609e6bac
https://www.mathworks.com/help/releases/R2019b/stateflow/ug/watching-data-values-during-simulation.html#mw_043c8165-a185-45e9-9e07-5a78b5d2811f
https://www.mathworks.com/help/releases/R2019b/stateflow/ug/sizing-stateflow-data.html#bstks_7

Version History
Behavior for ERT code generation has changed when you specify the size of a Stateflow data object
by using a Simulink parameter with a storage class that is not supported for symbolic dimensions.

Before R2019b R2019b
In the generated code, the symbolic dimensions
are replaced by their constant values. No error or
warning occurs.

Code generation results in an error. To resolve
the error:

• Change the storage class for the Simulink
parameter.

• In the Model Configuration Parameters dialog
box, clear the Allow symbolic dimension
specification check box.

Stateflow cache file support for code generation and Simulink
Simulink cache files now support code generation and Stateflow artifacts. The cached artifacts can
reduce the time required for successive simulation and code generation. Caching occurs
automatically when you simulate models in accelerator or rapid accelerator mode, or generate code
for models. When Simulink cache files are available in the Simulation cache folder (Simulink),
simulation and code generation automatically extract the relevant artifacts from the Simulink cache
file. To share Simulink cache files with team members, you can store them in a network location.

For more information on Simulink cache files, see Share Build Artifacts for Faster Simulation and
Code Generation (Simulink).

Zoom in Truth Tables
To zoom in on a truth table, press Ctrl++ (Command++).

To zoom out on a truth table, press Ctrl+- (Command+-).

To return to normal view (100%) on a truth table, press Ctrl+0 (Command+0).

Functionality being removed or changed
Use dot notation to access message data in MATLAB functions and truth tables
Behavior change

In R2019b, use dot notation syntax to read or write to the message data field in a MATLAB function
or a truth table function.

R2019b

6-8

https://www.mathworks.com/help/releases/R2019b/simulink/gui/simulink-preferences-general-pane.html#bslolo1-1
https://www.mathworks.com/help/releases/R2019b/simulink/ug/reuse-simulation-builds-for-faster-simulations.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/reuse-simulation-builds-for-faster-simulations.html

Before R2019b R2019b
In MATLAB functions or truth table functions, use
the name of a message to access the data field for
the message. For example to read the data for
message M and store it as the variable y, enter:

y = M;

To change the value of the data field and send the
message, enter:

M = u;
send(M);

If the data for M is a structure with fields a and b,
store the values of these fields by entering:

ya = M.a;
yb = M.b;

Use dot notation to access the data field for the
message. For example, to read the data for
message M and store it as the variable y, enter:

y = M.data;

To change the value of the data field and send the
message, enter:

M.data = u;
send(M);

If the data for M is a structure with fields a and b,
store the values of these fields by entering:

ya = M.data.a;
yb = M.data.b;

For more information, see Control Message Activity in Stateflow Charts.

Transition execution order is always visible
Behavior change

In R2019b, transition execution order numbers are always visible in a Stateflow chart.

Log multiple signals
Behavior change

In R2019b, the Stateflow Signal Logging dialog box is no longer available. To log multiple signals
from your Stateflow chart, press and hold shift to select the states for logging. In the Simulation tab,
under Prepare, select Log Self Activity.

6-9

https://www.mathworks.com/help/releases/R2019b/stateflow/ug/message-operations.html

Opening Stateflow
Behavior change in future release

The behavior of the stateflow function will change in a future release. Use sfnew and sflib
instead.

R2019b

6-10

https://www.mathworks.com/help/releases/R2019b/stateflow/ref/stateflow.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ref/sfnew.html
https://www.mathworks.com/help/releases/R2019b/stateflow/ref/sflib.html

R2019a

Version: 10.0

New Features

Bug Fixes

7

Stateflow Charts in MATLAB: Graphically program, debug, and execute
standalone state machines as MATLAB objects
Create a Stateflow chart outside of a Simulink model. Save the standalone chart with the new
extension .sfx and execute it as a MATLAB object. With standalone charts, you can create MATLAB
applications such as:

• MATLAB App Designer user interfaces that use mode logic to manage the behavior of widgets.
• Communication protocols and data stream processing applications that use sequential logic.
• Data Acquisition Toolbox™ or Instrument Control Toolbox™ applications that use timer-based

logic to monitor and control external tasks.

These applications can be shared and executed without requiring a Stateflow license. For more
information, see Create Stateflow Charts for Execution as MATLAB Objects.

Truth Table Breakpoints: Check Truth Table logic by setting
breakpoints and stepping though Truth Table simulation
Set breakpoints in a Stateflow Truth Table to check decision logic when Stateflow:

• Tests a condition.
• Tests a decision.
• Marks a decision as valid.
• Executes an action.

To set a breakpoint, right-click the corresponding area where the breakpoint is located. For example,
to set a breakpoint when a condition is tested, right-click the number of the condition. In the contest
menu select Set Breakpoint. Check the current data values by hovering over a condition or action
cell.

Truth Table breakpoint conditions allow breakpoint to pause simulation once the condition is met. To
set a breakpoint condition, click the breakpoint and add a condition under Breakpoint condition.

To disable a breakpoint, click the breakpoint and clear the Enable Breakpoint check box. To disable
all breakpoints, right click a cell in the Truth Table and select Configure Breakpoints > Disable All
Breakpoints.

To clear a breakpoint, click the breakpoint and clear the Set Breakpoint check box. To clear all
breakpoints, right click a cell in the Truth Table and select Configure Breakpoints > Clear All
Breakpoints.

Custom Code Symbols: Examine values when debugging a chart
While debugging your Stateflow charts, you can now view the values of your custom code symbols.
When simulation pauses, if you point at a state or transition in the chart, a tooltip displays the value
of custom variables that the object uses. The tooltip also displays chart data, messages, and temporal
logic expressions. For more information, see Watch Data in the Stateflow Chart.

R2019a

7-2

https://www.mathworks.com/help/releases/R2019a/stateflow/ug/create-stateflow-chart-objects.html
https://www.mathworks.com/help/releases/R2019a/stateflow/ug/watching-data-values-during-simulation.html#bugsdu8-2

Change detection for buses and matrices
Stateflow charts can detect changes in value for:

• Scalar variables
• Matrices or elements of a matrix
• Structures or fields in a structure

For more information, see Detect Changes in Data Values.

Enhanced subchart mapping capabilities
When mapping variables in an atomic subchart or atomic box, you can type an expression that
specifies:

• A field of a Stateflow structure
• An element of a vector or matrix

When referring to elements of a vector or matrix, regardless of the action language of the chart, use:

• One-based indexing delimited by parentheses and commas. For example, A(4,5).
• Zero-based indexing delimited by brackets. For example, A[3][4].

Indices can be numbers or parameters in the chart. Other expressions are not supported as indices.
For more information, see Map Variables for Atomic Subcharts and Boxes.

Optimized counters for temporal logic
Temporal logic operators produce integer or fixed-point type counters in generated code. The size of
the counter is optimized based on the operator and the type of threshold.

Relaxed restrictions on Moore charts
Transitions in Moore charts can contain condition and transition actions if these actions do not
introduce a dependency between output values and input values. For more information, see Design
Considerations for Moore Charts.

State machine logic control by using the count operator
The count(C) operator returns a double value equivalent to the number of ticks after the conditional
expression C becomes true. The count operator is reset if the conditional expression becomes
false. If the count operator is used within a state, it is reset when the state that contains it is
entered. If the count operator is used on a transition, it is reset when the source state for that
transition is entered. For more information, see count and Control Chart Execution by Using
Temporal Logic.

Stateflow contextual tabs in the Simulink Toolstrip
In R2019a, you have the option to turn on the Simulink Toolstrip. See Simulink Toolstrip Tech Preview
replaces menus and toolbars in the Simulink Desktop for more details.

7-3

https://www.mathworks.com/help/releases/R2019a/stateflow/ug/detecting-changes-in-data-values.html
https://www.mathworks.com/help/releases/R2019a/stateflow/ug/mapping-variables-for-atomic-subcharts.html
https://www.mathworks.com/help/releases/R2019a/stateflow/ug/design-considerations-for-moore-charts.html
https://www.mathworks.com/help/releases/R2019a/stateflow/ug/design-considerations-for-moore-charts.html
https://www.mathworks.com/help/releases/R2019a/stateflow/ref/count.html
https://www.mathworks.com/help/releases/R2019a/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/releases/R2019a/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/releases/R2019a/simulink/release-notes.html#mw_e6387c87-85de-4074-950e-2b305953d16c
https://www.mathworks.com/help/releases/R2019a/simulink/release-notes.html#mw_e6387c87-85de-4074-950e-2b305953d16c

The Simulink Toolstrip includes contextual tabs — they appear only when you need them. The
Stateflow contextual tabs include options for completing actions that apply only to Stateflow.

• To access the State Chart tab, click a Stateflow chart within a Simulink model.
• To access the State tab, click a State within a Stateflow chart.

R2019a

7-4

R2018b

Version: 9.2.0.0

New Features

Bug Fixes

Version History

8

Simulation Debugger: Check chart logic with simplified breakpoint
management, statement-by-statement stepping, and in-canvas
visualization of data and time
• Simplified management of breakpoints: Now there is a single menu option for setting

breakpoints on state or transitions. For states, the default breakpoint is On State Entry and
During State. For transitions, the default breakpoint is When Transition is Valid. For
more information, see Set a Breakpoint for a Stateflow Object.

• Statement by statement debugging: In state or transition actions containing more than one
statement, you can now step through the individual statements one at a time by selecting Step
Over. Stateflow highlights each statement before executing it. To execute a group of statements
together, right-click the last statement in the group and select Run To Cursor. For more
information, see Control Chart Execution After a Breakpoint.

• Data values in the Symbols window: When in debugging mode, the values of each data are
displayed in the VALUE column of the Symbols pane. When the debugger is stopped at a
breakpoint, you can change the value of a symbol in either the command prompt or the Symbols
pane. The value column highlights changes to data values as the changes occur.

In the Symbols pane multidimensional arrays appear as the data type and size of the array. If the
array does not exceed more than 100 elements, hover over the symbol to view the elements. For
arrays that contain more than 100 elements, view the elements by using the command prompt.

For other non-scalar objects, the size and data type appear. To see these values, use the Watch
window. See Watch Stateflow Data Values and Manage Stateflow Breakpoints and Watch Data.

• Introspection of temporal operators: When simulation pauses, if you point at a state or
transition in the chart, a tooltip now displays the value of the temporal logic expressions that the
selected object uses. For more information, see Watch Data in the Stateflow Chart.

External C Code: Fully integrate external C code in Stateflow charts
with change synchronization, error checking, and analysis by Simulink
Coverage and Simulink Design Verifier
Use your custom C code in Stateflow charts that use MATLAB as the action language. Directly call
functions and variables from custom C code without using coder.ceval or coder.opaque. Access
your custom code while using Just-In-Time Compilation mode. When you make changes to your
custom code, Stateflow charts automatically recompile. Errors messages display for incorrect custom
code symbols usage, such as when calling a function with the wrong number of variables. Custom
codes symbols appear in the Explore menu for quick navigation. For more information, see Custom
Code Algorithm.

Row-Major Array Layout: Define the array layout as row-major to
simplify integration with external C/C++ functions, tools, and libraries
When generating code from a C action language chart, you can specify the array layout for matrices.
For example, consider this matrix:

R2018b

8-2

https://www.mathworks.com/help/releases/R2018b/stateflow/ug/set-breakpoints-to-debug-charts.html#bugqztr
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/set-breakpoints-to-debug-charts.html#btm15jv
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/watching-data-values-during-simulation.html
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/manage-breakpoints-and-watch-data.html
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/watching-data-values-during-simulation.html#bugsdu8-2
https://www.mathworks.com/help/releases/R2018b/stateflow/custom-code-algorithm.html
https://www.mathworks.com/help/releases/R2018b/stateflow/custom-code-algorithm.html

By default, the code generator uses column-major layout to store the matrix in memory with this
arrangement:

{1, 4, 2, 5, 3, 6}

Now, you can select row-major layout to store the matrix in memory with this arrangement:

{1, 2, 3, 4, 5, 6}

Row-major layout is not supported in:

• Charts and state transition table blocks that use MATLAB as the action language.
• Charts that contain truth table functions that use MATLAB as the action language.
• Charts that contain MATLAB functions.
• Charts that use custom C code.
• Truth table blocks.

For more information, see Select Array Layout for Matrices in Generated Code.

Strings: Design embedded systems with native support of strings
Now, you can create and manipulate string data in a Stateflow chart that uses C as the action
language. The new string data type is compatible with strings in MATLAB and Simulink.

To manipulate string data in a chart, use the operators listed in this table.

Operator Syntax Description Example
strcpy dest = src Assigns string src to dest. Assigns string data to s1

and s2:

s1 = 'hello';
s2 = "good bye";

strcpy(dest,src) An alternative way to execute
dest = src.

Assigns string data to s3
and s4:

strcpy(s3,'howdy');
strcpy(s4,"so long");

strcat dest =
strcat(s1,...,sN)

Concatenates strings
s1,...,sN.

Concatenates strings to
form "Stateflow":

s1 = "State";
s2 = "flow";
dest = strcat(s1,s2);

substr dest =
substr(str,i,n)

Returns the substring of length n
starting at the i-th character of
string str. Use zero-based
indexing.

Extracts substring
"Stateflow" from a
longer string:

str = "Stateflow rule the waves";
dest = substr(str,0,9);

8-3

https://www.mathworks.com/help/releases/R2018b/stateflow/ug/row-major-and-multidimensional-layout.html

Operator Syntax Description Example
tostring dest =

tostring(X)
Converts numerical, Boolean, or
enumerated data to string.

Converts numerical value
to string "1.2345":

dest = tostring(1.2345);

Converts Boolean value to
string "true":

dest = tostring(1==1);

Converts enumerated value
to string "RED":

dest = tostring(RED);

strcmp tf =
strcmp(s1,s2)

Compares strings s1 and s2.
Returns 0 if the two are identical.
Otherwise returns a nonzero
integer that depends on the input
strings and the compiler that you
use.

Strings are considered identical
when they have the same size
and content.

This operator is consistent with
the C library function strcmp.
The operator behaves differently
than the function strcmp in
MATLAB.

Returns a value of 0
(strings are equal):

tf = strcmp("abc","abc");

Returns a nonzero value
(strings are not equal):

tf = strcmp("abc","abcd");

s1 == s2 An alternative way to execute
strcmp(s1,s2) == 0.

Returns a value of true:

"abc" == "abc";

s1 != s2 An alternative way to execute
strcmp(s1,s2) != 0.

Returns a value of true:

"abc" != "abcd";

tf =
strcmp(s1,s2,n)

Returns 0 if the first n characters
in s1 and s2 are identical.

Returns a value of 0
(substrings are equal):

tf = strcmp("abc","abcd",3);

strlen L = strlen(str) Returns the number of
characters in the string str.

Returns a value of 9:

L = strlen("Stateflow");

R2018b

8-4

https://www.mathworks.com/help/releases/R2018b/matlab/ref/strcmp.html

Operator Syntax Description Example
str2double X =

str2double(str)
Converts the text in string str to
a double-precision value.

str contains text that represents
a number. Text that represents a
number can contain:

• Digits
• A decimal point
• A leading + or - sign
• An e preceding a power of 10

scale factor

If str2double cannot convert
text to a number, then it returns
a NaN value.

Returns a value of
-12.345:

X = str2double("-12.345");

Returns a value of 123400:

X = str2double("1.234e5");

str2ascii A =
str2ascii(str,n)

Returns array of type uint8
containing ASCII values for the
first n characters in str, where n
is a positive integer. Use of
variables or expressions for n is
not supported.

Returns uint8 array
{72,101,108,108,111}:

A = str2double("Hello",5);

ascii2str dest =
ascii2str(A)

Converts ASCII values in array A
of type uint8 to string.

Returns string "Hi!":

A[0] = 72;
A[1] = 105;
A[2] = 33;
dest = ascii2str(A);

For more information, see Manage Textual Information by Using Strings.

Messages: Produce strictly typed, readable, and MISRA-C Mandatory
and Required check compliant code from messages
In R2018b, messages, queues, and related data structures are strictly typed to improve code quality
and enable verification and validation workflows. Generated code is more compact and readable. For
Stateflow charts sending or receiving messages, Mandatory and Required MISRA-C checks have zero
violations.

C action language in state transition tables
State transition tables support using C as the action language. For more information about the
differences between these action languages, see Differences Between MATLAB and C as Action
Language Syntax.

To set C as the action language, in the Stateflow editor, select Chart > Properties.

Under Action Language, select C from the drop-down list.

8-5

https://www.mathworks.com/help/releases/R2018b/stateflow/ug/string-data-in-charts.html
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html

Custom code headers for enumerated data and buses
For imported enumerated data and buses, the header file is not required in the Simulation Target
pane in the Configuration Parameters dialog box.

Multidimensional array indexing in generated code
If you have Embedded Coder, you can generate code that preserves the multidimensionality of
Stateflow local data without flattening the data as one-dimensional arrays. For example, consider this
matrix:

By default, with row-major layout, the code generator flattens the matrix as a one-dimensional array:

{1, 2, 3, 4, 5, 6}

Now, by selecting the configuration parameter Preserve Stateflow local data array dimensions,
you can implement the matrix as a two-dimensional array:

{{1, 2, 3}, {4, 5, 6}}

To preserve Stateflow local data array dimensions, you must first select row-major layout. For more
information, see Select Array Layout for Matrices in Generated Code.

Pass-by-reference semantics in functions
In graphical functions, in truth table functions, and in MATLAB functions in Stateflow charts, you can
use the same variable name for both input and output. For example, this MATLAB function uses the
variables y1 and y2 as both inputs and outputs:

function [y1, y2, y3] = f(y1, u, y2)
 y1 = y1 + 1;
 y2 = y2 + 1;
 y3 = u + y2;
end

If you export this function to C code, y1 and y2 are passed by reference (as pointers) and u is passed
by value. Passing inputs by reference reduces the number of times that the generated code copies
intermediate data, resulting in more optimal code.

Pass-by-reference semantics are supported in Simulink function blocks but not in Simulink functions
in Stateflow charts.

Functionality being removed or changed
Stateflow charts that integrate custom code may need to turn off option Import Custom
Code in the Configuration Parameters
Behavior change

R2018b

8-6

https://www.mathworks.com/help/releases/R2018b/stateflow/ug/row-major-and-multidimensional-layout.html

When you import custom code to a Stateflow chart, you may need to turn off the Import Custom
Code option in the Simulation pane of the Configuration Parameters. Prior to R2018b, this option was
called Parse Custom Code Symbols. For more information see Import custom code (Simulink).

8-7

https://www.mathworks.com/help/releases/R2018b/simulink/gui/parse-custom-code-symbols.html

R2018a

Version: 9.1

New Features

Bug Fixes

Version History

9

Truth Table Editor: Design combinatorial logic within the Simulink and
Stateflow editing environment by using edit-time checking,
animation, and step-by-step debugging
Truth tables are fully integrated into the Stateflow editing environment. To add and manage data to
your truth table, use the Symbols pane. To modify the properties of your truth table, use the Property
Inspector. You can drag, cut, copy, and paste multiple rows or columns with multi-selection
capabilities. As you modify your truth table, the generated content is automatically updated.

Just-In-Time Debugger: Set breakpoints and debug Stateflow charts
while using Just-In-Time simulation
You can run Stateflow charts with debugging support while in Just-In-Time (JIT) mode. JIT mode
improves the model update performance of your Stateflow charts. See Speed Up Simulation.

Implicit entry,during action type for unspecified state actions
If you do not specify the state action type explicitly for a statement, the chart treats that statement as
an entry,during action.

Version History
Chart behavior for unspecified state actions has changed.

Before R2018a R2018a
Charts using MATLAB as the action language
did not allow unspecified state actions. The
Stateflow editor added the state action type
entry to any unspecified state actions.

Charts using MATLAB as the action language
allow unspecified state actions, treating them as
entry,during type actions.

Charts using C as the action language
allowed unspecified state actions, treating them
as entry type actions.

Charts using C as the action language allow
unspecified state actions, treating them as
entry,during type actions.

To allow for backward compatibility in R2018a:

• To preserve the original chart behavior, opening C action language charts that you saved in a
previous version adds the entry label to all unspecified state actions. The change does not affect
MATLAB action language charts that you saved in a previous version.

• Exporting a chart to a previous version adds the entry,during label to all unspecified state
actions.

Input events for atomic subcharts
To use an atomic subchart that has been saved in a library, but not use the entire saved set of input
events, you can disable input events. Under the Mappings tab in the Properties dialog box, you can
disable input events that you do not need. To disable an input event, under Input Event Mapping,
select <disabled> from the drop-down list.

R2018a

9-2

https://www.mathworks.com/help/releases/R2018a/stateflow/ug/speed-up-simulation.html

R2017b

Version: 9.0

New Features

Bug Fixes

10

Simulink Subsystem as a Stateflow State: Design states by using
continuous and periodic Simulink algorithms to model hybrid systems
In Stateflow, you can model hybrid dynamic systems, which include continuous or periodic Simulink
algorithms embedded in Stateflow states. Use Simulink state reader and state writer blocks or the
Stateflow action language to initialize the state of Simulink blocks when you transition from one
Simulink based state to another.

You can also use Simulink based states linked to a subsystem in a library model. When you update the
library subsystem, the changes are reflected in all Stateflow charts containing the block.

Sequence Viewer: Visualize state changes, event activity, and function
calls over time
The Message Viewer block has been renamed the Sequence Viewer block. With this block, you can
visualize state changes, event activities, and function calls in your Stateflow chart.

State and Data Visualization: Stream state activity and data directly
from Stateflow to the Simulation Data Inspector
You can directly log and view self, child, and leaf state activity for your Stateflow chart by using the
Simulation Data Inspector.

Transition Syntax Cues: Create transition labels using syntax cues
While you are editing your chart, use action language cues to create an event, condition, or an action
on a transition. After creating a transition, Stateflow shows cues to create a condition or an action.
Click a cue and begin typing to add a condition or action.

If your chart includes an event or a message, an additional cue for the event or message appears to
the left of the condition cue.

R2017b

10-2

https://www.mathworks.com/help/releases/R2017b/simevents/ref/sequenceviewer.html

Symbols pane preferences

To control when objects and symbols in your chart are highlighted, use the preferences button
in the Symbols pane.

Conversion of Switch-Case statements with parameters
When generating Switch-Case statements from an If-Elseif-Else flow chart, parameters that are used
on the right hand side of a condition are preserved.

Local data initialization
For local data, you can set the initial value to be resolved to a Simulink parameter. Before you
initialize local data to a Simulink parameter, click Allow initial value to resolve to a parameter in
the Property Inspector. See Simulink.Parameter (Simulink).

Scoped Simulink functions
In Stateflow, you can call external scoped Simulink functions by using qualified dot notation. See
Scoping Simulink Functions in Subsystems (Simulink).

10-3

https://www.mathworks.com/help/releases/R2017b/simulink/slref/parameter.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/functions-and-callers-scoping.html

R2017a

Version: 8.9

New Features

Bug Fixes

11

Stateflow Layout: Automatically improve chart readability
With Arrange Automatically, Stateflow arranges your charts to:

• Expand states and transitions to fit their label strings.
• Resize similar states to be the same size.
• Align states if they were slightly misaligned.
• Straighten transitions.
• Reposition horizontal transition labels to the midpoint.

To format your chart, select Chart > Arrange > Arrange Automatically.

Temporal Logic Operators: Express state machine logic more concisely
by using the duration and the elapsed operators
In 2017a, you can use the operators duration and elapsed to implement new temporal logic
capabilities for Stateflow. These expressions evaluate simulation time of your Stateflow chart.

Operator Syntax Description Example
elapsed elapsed(sec) Returns the simulation time

in seconds (sec) that has
elapsed since the activation
of the associated state.

Assign to y the length of time since
the state has been active in
seconds:

en, du: y = elapsed(sec);
duration duration(condEx

p)
Returns the seconds after the
conditional expression,
condExp, becomes true,
within the statement time
step.

Return true if the time in seconds
since Phi > 1 is greater than 50:

duration(Phi > 1) > 50

Message Operations: Manage messages and analyze message queues
with the keywords discard, length, isvalid, and receive
You can use the keywords discard, isvalid, length, and receive for Stateflow messages.

• receive(M): equivalent to message on M in state actions or message guard M on transitions.
This function returns true if a valid message M exists, or a new message can be removed from the
associated queue.

• length(M): returns the number of messages in the queue associated with M. To determine how
many spaces are left in the queue, subtract the length from the queue capacity.

• isvalid(M): returns true if message M is valid. A message is valid when it is removed from the
queue but has not been forwarded or discarded.

discard(M): discards a valid message. After you discard a message, you can remove a new
message from the queue within the same time step.

R2017a

11-2

Editing cues for creating junctions and states
While you are editing your chart, use cues to quickly create a junction or state. When you draw a
transition from a junction or state, a cue appears at the end of the junction. The cue shows the outline
of a junction and a state. Initially, the junction is highlighted.

To create the junction, click the highlighted cue. To select a state, move the cursor until the state cue
is highlighted.

Then, click the state cue.

Automatic port generation
Ports can now be automatically generated for your Stateflow chart. Create a signal and drag it to a
supported block that already has all its inports and output ports connected. Automatic port
generation is supported in the following blocks:

• Charts
• Truth Tables
• State Transition Tables

Automatic correction of variable type assignment errors
Within your Stateflow chart that uses MATLAB as the action language, variable type assignment
errors between MATLAB and Stateflow are automatically corrected for constants and constant
expressions. For example, this Stateflow chart shows the variable var1 being initialized to the
integer value 3. Prior to 2017a, when assigning a variable you had to cast the data type in the
assignment.

11-3

In 2017a, when assigning a variable to a constant or constant expression you do not have to specify
the data type. The type of the right side of your equation is propagated to the left side for constants
and constant expressions.

Reduce use of coder.extrinsic
To declare functions that are not supported for code generation, use coder.extrinsic only once
within a chart. Atomic subcharts in a chart that has already declared a function with
coder.extrinsic must reuse coder.extrinsic.

Zoom in State Transition Tables
To zoom in and out of your State Transition Table, select View > Zoom. At any zoom level, you can
drag and drop objects, print, and resize your rows and columns. New items are added in to your State
Transition Table at the zoom level that is consistent with your chart. When you save your model, the
zoom level is also saved.

Absolute-time temporal logic code generation
For some absolute-time constructs using fixed-point parameters, Stateflow generates more efficient
code that does not contain floating point operations.

For example, consider after(DELAY, sec) in a chart with a sample time of the chart < 1 second
where DELAY is a fixed-point parameter. Previously the code generator created the following code:

counter >= (uint32_T)ceil((real_T)DELAY * 0.05 / 0.1 - 1e-9)

R2017a

11-4

Now, it generates:

(counter >> 1) >= DELAY

This code contains fewer operations and does not include floating-point operations.

State behavior specification for Truth Table blocks with function-call
input events
If you define a function-call input event for a Truth Table block, you can now specify the state
behavior when this event reenables the block. To specify this behavior, use the States When
Enabling block parameter located in the Properties > Advanced section of the Property Inspector.

When you set States When Enabling to Held, the simulation maintains the most recent values of
the states when the function-call event reenables the Truth Table block. If you set States When
Enabling to Reset, the function-call event reverts states to their initial conditions.

11-5

R2016b

Version: 8.8

New Features

Bug Fixes

Version History

12

Edit-Time Checking: Detect and fix potential issues in charts at design
time
Identify modeling issues while you edit charts with edit-time checking. Edit-time checking provides
visual cues for Stateflow errors and warnings. Objects are highlighted in red or orange on the chart
to alert you to issues with your model. To display information about the issue, hover your cursor over
a highlighted object and click the error or warning icon. The Stateflow editor highlights these issues:

• Syntax errors on states or transitions
• Transition action precedes a condition action along this path
• Dangling transitions
• Invalid default transition
• Default transition is missing
• Transition shadowing
• State not reachable on the execution path
• Unexpected backtracking
• Transition loops outside natural parent
• Invalid transitions crossing into or out of a graphical function

After you click the error or warning icon, a window appears showing suggestions for you to fix the
issue. When possible, click Fix for Stateflow to apply a fix. To turn off the edit-time checking, select
Display > Error & Warnings. See Modeling Rules That Stateflow Detects During Edit Time.

Symbol Manager: Create and manage data, events, and messages
directly in the Stateflow Editor
In the Symbol manager, you can view and manage data, events, and messages while working in the
Stateflow editor. To open the Symbols pane, select View > Symbols. From the Symbols pane you can:

• Add and delete data, events, and messages.
• Set the object type and scope.
• Change the port number.
• Edit the name of an object and update all instances of the object name in the chart.
• Undo and redo changes in type, name, and port number.
• Detect unused objects.
• Detect and fix unresolved objects.
• Trace between objects in the window and where the objects are used in the chart.
• View and edit object properties in the Property Inspector.

Use the Edit menu to undo and redo many symbol property changes. When you select an object in
the Symbols pane, Stateflow highlights uses of the object in the chart. See Trace Data, Events, and
Messages with the Symbols Window. When you rename an object, select Ctrl+Enter to rename all
instances of the object. To open the Property Inspector, in the Symbols pane, right-click the object
and select Inspect.

R2016b

12-2

https://www.mathworks.com/help/releases/R2016b/stateflow/ug/stateflow-edit-time-checks.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/trace-data-events-and-messages-with-the-symbols-window.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/trace-data-events-and-messages-with-the-symbols-window.html

Property Inspector: Edit properties of graphical and nongraphical
objects directly in the Stateflow Editor
Property inspector view is available for Stateflow blocks. While working in the Stateflow editor, you
can modify the properties of your state machine objects. To open the Property Inspector window,
select View > Property Inspector, or right-click an object in the Symbols pane and select Inspect.
See Set Data Properties and Specify Chart Properties.

State Transition Table Debugging: Design and debug tabular state
machines faster by using animation, syntax highlighting, and
breakpoints
When you design and debug a state transition table in R2016b, the state transition table editor offers
these improvements:

• Syntax highlighting — Keywords are highlighted in blue, comments are highlighted in green.
• Animation — When you run a simulation, the active state or transition is highlighted.
• Breakpoints — You can set breakpoints directly in the state transition table.
• Debug tooltips — When you set breakpoints, you can hover your cursor over table cells to see

what data is used and the data value.

Syntax Highlighting: Identify events and function names easily in
charts with MATLAB as the action language
In charts that have MATLAB as the action language, function and events names are highlighted.

• Function names (blue)
• Event names (orange)

This syntax highlighting improves readability of the charts and matches the syntax highlighting of C
charts.

Scoped Simulink Function Access: Call exported chart functions with
restricted scope from Simulink function blocks
You can now encapsulate model components with scoped functions exported from Stateflow charts.
Place the charts within a subsystem hierarchy, and call the functions by using qualified dot notation,
chartName.functionName from a Simulink Caller block. Before R2016b, you placed your Stateflow
chart with exported functions at the top level of the model, and set the functions as global throughout
the Simulink model.

To call scoped Stateflow functions with qualified notation from a Simulink Caller block, select the
chart property Export Chart Level Functions, and clear Treat Exported Functions as Globally
Visible. To make all Stateflow functions available to the entire model, including other Stateflow
charts, select Treat Exported Functions as Globally Visible. See Simulink Functions in Stateflow.

Version History
Stateflow chart properties for exporting functions have changed.

12-3

https://www.mathworks.com/help/releases/R2016b/stateflow/ug/set-data-properties-1.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/specifying-chart-properties.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/simulink-functions-in-stateflow.html

Before R2016b In R2016b
Export Chart Level Functions (Make Global)
allowed Stateflow blocks throughout the model to
call the Stateflow functions.

Export Chart Level Functions allows Simulink
Caller blocks to call Stateflow functions in the
local hierarchy by using qualified dot notation,
chartName.functionName.

Allow exported functions to be called by
Simulink allowed Simulink Caller blocks to call
Stateflow functions.

Treat Exported Functions as Globally Visible
allows Stateflow and Simulink Caller blocks
throughout the model to call the Stateflow
functions. Do not use qualified notation to call
these functions.

When you open a model created in a previous version, to maintain similar behavior, Stateflow selects
Export Chart Level Functions and Treat Exported Functions as Globally Visible for charts with
property Export Chart Level Functions (Make Global) selected.

Additional changes to behavior are listed in this table.

Before R2016b In R2016b
Functions exported from a chart with Export
Chart Level Functions (Make Global)
selected, but not Allow exported functions to
be called by Simulink were allowed to have the
same name as a Simulink Function.

Functions exported from a chart with Export
Chart Level Functions and Treat Exported
Functions as Globally Visible are not allowed
to have the same name as a Simulink Function in
the model.

Supported scalar expansion of exported function
input or output data.

Does not support scalar expansion of exported
functions input or output data.

Support calling exported functions from charts
with different sample rates.

Does not support calling exported functions from
charts with different sample rates. Continuous
time charts cannot call export functions.

Supports specifying the input or output data type
using the type operator.

Does not support specifying the input or output
data type using the type operator.

Diagnostic configuration parameters
Stateflow detects new diagnostics with these configuration parameters on the Diagnostics pane.

Configuration Parameter Default Setting Diagnostic
Absolute time temporal value
shorter than the sampling
period

Warning Detects when a state or
transition absolute time
operator uses a time value that
is shorter than the sample time
for the Stateflow block

Self transition on leaf state Warning Detects when a self-transition
on a leaf state can be removed.
If there are no actions in the
leaf state or on the self-
transition, then the self-
transition has no affect on chart
execution.

R2016b

12-4

Configuration Parameter Default Setting Diagnostic
Execute-at-Initialization
disabled in presence of input
events

Warning Detects when triggered or
enabled charts are not running
at initialization.

Use of machine-parented
data instead of Data Store
Memory

Warning Detects machine-parented data
that should be replaced with
chart-parented data of scope
Data Store Memory.

Unreachable Execution Path Warning Detects when a path or object
on a chart is unreachable and
will not be executed.

Set the diagnostic action to none, warning, or error for each parameter.

Version History
The issues detected by the Diagnostics pane configuration parameter Transition shadowing are
now detected by Unreachable Execution Path. Transition shadowing is no longer visible and is
controlled by the setting for Unreachable Execution Path. When you load a model created in a
version previous to R2016b, Stateflow changes the setting for Unreachable Execution Path to
match the previous setting for the Transition shadowing parameter.

Diagnostic level option for message queue overflows
For each message queue, choose the level of diagnostic for queue overflows:

• Error (default)
• Warning
• None

Before R2016b, all message overflows caused an error.

Message Viewer updates to inspect values of structured data and
sequencing of function calls
The Message Viewer block has been updated to display the values of structured data during model
execution and sequencing of function calls for these function call types:

• Calls to Simulink Function blocks — Fully supported.
• Calls to Stateflow graphical or Stateflow MATLAB functions — With this support:

• Scoped — Select the Export chart level functions chart option. Use the
chartName.functionName dot notation.

• Global — Select the Treat exported functions as globally visible chart option. Do not need
the dot notation.

For more information, see Work with Message Viewer.

12-5

https://www.mathworks.com/help/releases/R2016b/stateflow/ref/messageviewer.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/what-are-messages.html

Bus support for Simulink Caller blocks calling Stateflow functions
Simulink Caller blocks can call exported Stateflow functions with buses as input and output data.
Stateflow can also call Simulink functions with buses as input and output data.

Conditional breakpoints in MATLAB Functions for run-time debugging
To help you debug code, you can enter a MATLAB expression as a condition on a breakpoint inside a
MATLAB function. Simulation then pauses on that breakpoint only when the condition is true. To set a
conditional breakpoint, in the MATLAB function editor, right-click beside the line of code and select
Set Conditional Breakpoint. Type the condition in the pop-up window. You can use any valid
MATLAB expression as a condition. This condition expression can include numerical values and any
data that is in scope at the breakpoint.

When you right-click a breakpoint, you can choose:

• Set/Modify the condition
• Disable breakpoint
• Clear breakpoint

You can also perform these actions from the Breakpoints menu in the MATLAB function editor.

Compiler optimization parameter support for faster simulation
In R2016b, Stateflow applies the setting for the configuration parameter Compiler optimization
level to Stateflow blocks. To speed up the simulation time for your model, set the configuration
parameter to Optimizations on (faster runs). The application of compiler optimizations consumes
extra time during the build process. The default setting, Optimizations off (faster build) disables
compiler optimizations and provides the fastest build times.

Text Autocompletion for State Transition Tables
When typing in a state transition table, a list of suggested completions appears. Choose between the
suggestions with the up and down arrows. To select a suggestion, use Enter.

R2016b

12-6

R2016a

Version: 8.7

New Features

Bug Fixes

Version History

13

Smart Editing Cues: Accelerate common editing tasks with just-in-
time contextual prompts
When you select a Stateflow block, a cue appears where you select common actions. When you move
your cursor over the cue, an action bar appears. Click the action you want to perform. For Stateflow
blocks, you can comment or uncomment the block or hide or display the block name.

Inside the Stateflow editor, use the cue and action bar to perform tasks on objects or groups of
objects, such as:

• Toggle breakpoints
• Create superstates
• Comment and uncomment objects

Intelligent Chart Completion: Build charts faster with automatic
addition of default transitions and creation of complementary state
names
The Stateflow editor provides you with these enhancements.

• Automatic addition of default transition: When you create a state in a new chart or new level of
hierarchy, Stateflow automatically adds a default transition.

• Creation of complementary state names: When you copy a state with a common name, the copied
state is given a complementary name.

• Transition creation guide: When you align states or junctions, blue transition guides appear. To
create a transition, hover over one end of a guide to choose the direction and click to create.

Simulink Units: Specify, visualize, and check consistency of units on
chart interfaces
Stateflow supports the specification of a unit property for data inputs and outputs of Stateflow blocks.
Specify units by using the Unit (e.g., m, m/s^2, N*m) parameter for input or output data on charts,
state transition tables, or truth tables. This parameter uses autocompletion to help you specify units.

Stateflow checks for inconsistencies in units between the data objects in Stateflow and their
corresponding Simulink signals during model update. See Units in Stateflow.

R2016a

13-2

https://www.mathworks.com/help/releases/R2016a/stateflow/ug/units-in-stateflow.html

Output Logging: Log output signals for charts
You can log output data of different types and sizes in Stateflow blocks. In previous releases, you
could log only local data. See Configure States and Data for Logging.

JIT for Messages: Reduce model update time for messages with JIT
compilation technology
Charts that contain messages qualify for Just-In-Time (JIT) compilation mode to improve model
update performance. Stateflow applies JIT mode if possible.

API changes for commented objects
Previously, to determine if Stateflow objects were explicitly or implicitly commented out you used
these properties:

• Comment.Explicit (Read/Write)
• Comment.Implicit(Read only)
• IsCommented(Read only)

In R2016a, the names of the properties have changed to:

• IsExplicitlyCommented(Read/Write)
• IsImplicitlyCommented(Read only)

Use the method IsCommented() to query if an object is explicitly or implicitly commented out. This
method returns a Boolean.

Version History
Update scripts that use these API object properties.

Before R2016a R2016a
Comment.Explicit IsExplicitlyCommented
Comment.Implicit IsImplicitlyCommented
IsCommented is a property isCommented is a method

Stateflow model templates for common design patterns
From the Simulink Start page, by using a template, you can create a model with a Stateflow block.
Use templates to start building your model from these common design patterns.

Template Design Pattern
Blank Chart Blank Stateflow chart
Simple Stateflow Chart Chart containing basic building blocks for a state

diagram
Hierarchical Chart Chart that models a hierarchical state diagram

13-3

https://www.mathworks.com/help/releases/R2016a/stateflow/ug/configure-states-and-local-data-for-logging.html

Template Design Pattern
Simple State Transition Table State transition table containing a tabular state

machine
Moore Chart Chart that uses Moore machine semantics

UserData parameter available for storing values
Use set_param() and get_param() to store and retrieve values in the UserData parameter for
Stateflow blocks. Previously, Stateflow used the UserData parameter for storage of internal data.

R2016a

13-4

R2015aSP1

Version: 8.5.1

Bug Fixes

14

R2015b

Version: 8.6

New Features

Bug Fixes

Version History

15

Multilingual Labels: Use any language to create comments and
descriptions in states and transitions
You can use international characters to create comments and descriptions inside Stateflow charts.

Messages: Objects that carry data and can be queued
In Stateflow, you can send, receive, and forward messages that can hold data. You can also guard
conditions or state actions with messages. You access message data by reading it or writing to it. Use
messages for:

• Scheduling operations within charts
• Communicating between charts that run asynchronously
• Failure and diagnostic modeling

Messages interact in Simulink through message input and output ports.

Messages do not trigger a chart to wake up when a message is received. With events, if the receiver
cannot immediately respond to the event, then the event is lost. Messages are queued at the message
input port until the chart wakes up. When the chart wakes up, it responds to the messages from the
input queue. Messages can be removed from the queue for processing during the chart execution
period. At the end of chart execution, message processing is completed and the message is destroyed.
For more information, see How Messages Work in Stateflow Charts.

You can create local messages. A local message has its own queue with the same queue properties as
the message input port.

To visualize the progress of messages during simulation, use the Message Viewer block. For more
information, see Work with Message Viewer.

Overflow and data range detection settings unified with Simulink
Previously, you controlled overflow detection in Stateflow blocks with the configuration parameter
Detect wrap on overflow. This parameter was on the Simulation Target pane in the Model
Configuration Parameters dialog box.

You now control the overflow detection for Stateflow blocks with the configuration parameter Wrap
on overflow. This parameter is on the Diagnostics: Data Validity pane in the Model Configuration
Parameters dialog box. Choose one of these three settings: none, warning, and error.

Previously, you controlled data range error checking in Stateflow blocks in the Stateflow Editor, with
Simulation > Debug > MATLAB & Stateflow Error Checking Options > Data Range.

You now control data range checking with the configuration parameter Simulation range checking.
This parameter is on the Diagnostics: Data Validity pane in the Model Configuration Parameters
dialog box. Choose one of these settings: none, warning, and error.

See Diagnostics Pane: Data Validity.

R2015b

15-2

https://www.mathworks.com/help/releases/R2015b/stateflow/ug/how-messages-work-in-stateflow-charts.html
https://www.mathworks.com/help/releases/R2015b/stateflow/ug/what-are-messages.html
https://www.mathworks.com/help/releases/R2015b/simulink/gui/diagnostics-pane-data-validity.html

Version History
When you open a Stateflow model saved in a previous release, a change in behavior is possible. These
Stateflow options are no longer valid:

• Detect wrap on overflow on the Simulation Target pane in the Model Configuration
Parameters dialog box

• Simulation > Debug > MATLAB & Stateflow Error Checking Options > Data Range in the
Stateflow editor

In R2015b, Stateflow determines overflow detection and data range by the settings of these Simulink
options on the Diagnostics: Data Validity pane in the Model Configuration Parameters dialog box.

• Wrap on overflow
• Simulation range checking

Set each configuration parameter to none, warning, or error. If the previous Stateflow options
saved with the model were set differently than the current Simulink options, you see a warning.

The command-line parameter SFSimOverflowDetection is no longer valid. Use
IntegerOverflowMsg instead. The API parameter Debug.RunTimeCheck.DataRangeChecks for
a Stateflow.Machine is no longer valid. Use the command-line parameter
SignalRangeChecking instead.

When you save a current Stateflow model in a previous version, the current Simulink parameters are
saved. Both the Stateflow overflow and data range parameters are saved as selected.

New State Transition Table Editor: Dock state transition tables within
the Stateflow editor window
The new state transition table editor is docked inside of the Stateflow editor window. When you open
a state transition table, it no longer opens a window outside of the Stateflow editor.

Monitor State Activity in Code: Bind active state child variable to
Simulink.Signal for controlling its properties in generated code
You can specify active state data as a local variable. Create the active state output port in the chart
Properties window. In the Model Explorer, change the scope of the data from output to local. You
can specify information for code generation by binding the local state activity data to a
Simulink.Signal object. Modify the properties in CoderInfo.

Initial values supported for data in charts that use MATLAB as the
action language
You can assign initial values for data with a scope of output or local in charts using MATLAB as the
action language.

15-3

Continuous-time update method not allowed in Moore charts

Version History
In Moore charts, you cannot set the update method to Continuous. For modeling systems with
continuous-time in Stateflow, use Classic or Mealy charts.

R2015b

15-4

R2015a

Version: 8.5

New Features

Bug Fixes

Version History

16

JIT compilation technology to reduce model update time
Stateflow uses just-in-time (JIT) compilation technology to improve model update performance of
many charts. For these charts, Stateflow does not generate C code or a MEX-file to simulate the
chart. Stateflow applies JIT mode to charts that qualify. You do not have to enable it.

When a chart uses JIT mode, debugging is disabled. For charts in JIT mode, debugging is no longer
tied to animation. Even when debugging is disabled, you see chart animation. To debug, set a
breakpoint in the chart. Stateflow enables debugging, and does not use JIT mode.

Version History
By default, the software uses JIT mode on charts to speed up compilation time. When a chart uses JIT
mode, debugging is disabled. During simulation, you cannot set a breakpoint. If you set a breakpoint
in a chart before simulation begins, Stateflow enables debugging on the chart. You no longer directly
enable or disable debugging with Enable debugging/animation on the Simulation Target pane of
the Configuration Parameters dialog box or menu option.

In previous releases, if you set the command-line parameter SFSimEnableDebug, the software
enabled debugging and animation. Now, setting this parameter prevents the chart from using JIT
mode. To gain the performance of JIT mode, do not set this command line parameter.

Some charts do not qualify for JIT mode, such as charts that integrate custom C code or use signal
logging. In these cases, the software defaults to MEX-file generation with debugging enabled. For
optimal simulation performance for these charts, turn off debugging by using this command.

sfc('coder_options', 'forceDebugOff', 1);

After you run this command, these charts do not have debugging, animation, or run-time error
checking.

In previous releases, you single stepped through a chart, and then stepped into an atomic subchart,
or stepped out to another chart. Now, single stepping in a chart does not step into or out of other
charts.

Mapping of atomic subchart variables with main chart variables of
different scope
You can map variables in atomic subcharts to variables at the main chart level of different scopes. For
example, you can now map an atomic subchart input to a main chart variable that is an input, output,
local, or parameter. These mappings are supported.

Atomic Subchart Variable Scope Main Chart Variable Scope
Input Input, Output, Local, Parameter
Output Output, Local
Data Store Memory Data Store Memory, Local
Parameter Parameter

You can also map a variable in an atomic subchart to an element of a bus in the main chart.

Do not export graphical functions from an atomic subchart that maps variables to variables at the
main chart level with a different scope. For example, if an atomic subchart maps an input variable to

R2015a

16-2

an output variable in the main chart, the scope of the variable is different between the atomic
subchart and the main chart. For this atomic subchart, do not export graphical functions.

Also, you cannot log signals from atomic subcharts that map variables with different scopes.

Moore chart improvements for functions, local data, and code
readability
Moore charts are improved to support additional programming constructs, and enforce Moore
semantics. Beginning in R2015a, in Moore charts, you can:

• Include local data.
• Include graphical functions.
• Include MATLAB functions.
• Include truth tables.
• Program actions in all levels of state hierarchy, not just leaf states.
• Easily read the generated code.
• Design an algebraic loop

For more information, see Design Considerations for Moore Charts.

Version History
Moore charts now have tighter semantic restrictions to ensure that outputs rely only on current state,
and do not rely on input or previous output values. To relax this restriction, in the Diagnostics >
Stateflow pane of the Model Configuration Parameters dialog box, change the setting for Read-
before-write to output in Moore chart. Change the setting from error to warning or none.

Beginning in R2015a, Moore charts have these limitations:

• You cannot export functions.
• You cannot enable super step semantics.
• You cannot use more than one input event.

The limitation to not allow data store memory (DSM) is enforced in Mealy and Moore charts.

Nonprefixed enumerations in charts using MATLAB as action language
You can now refer to enumerated values in charts that use MATLAB as the action language without
fully specifying the class name. To do so, explicitly specify the enumeration type as the data type for
any data used in the Stateflow chart. Then you can use a simplified nonprefixed identifier for that
enumeration type.

For example, you have the following enumeration defined on the MATLAB path:

classdef(Enumeration) TrafficColors < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Green(2)

16-3

https://www.mathworks.com/help/releases/R2015a/stateflow/ug/design-considerations-for-moore-charts.html

 end
end

If you have data in your chart where the type is Enum: TrafficColors, you can use the
nonprefixed notation Red, instead of TrafficColors.Red.

For more information, see Notation for Enumerated Values in Charts and Define Enumerated Data in
a Chart.

Removal of transition error checking
In R2015a, the error checking option, Simulation > Debug > MATLAB & Stateflow Error
Checking Options > Transition Conflict, has been removed. In previous releases, this option was
available for C charts that used implicit ordering of transitions. Use explicit ordering of transitions to
ensure that there are no transition conflicts.

Removal of set breakpoints options in property dialog boxes
In R2015a, the options to set breakpoints in the property dialog boxes of these objects have been
removed:

• Charts
• States
• Transitions
• Graphical functions
• Truth tables
• Atomic subcharts
• State transition tables

You can set breakpoints for these objects directly in the Stateflow editor. For more information, see
Set Breakpoints to Debug Charts.

R2015a

16-4

https://www.mathworks.com/help/releases/R2015a/stateflow/ug/notation-for-referring-to-enumerated-values-in-a-chart.html
https://www.mathworks.com/help/releases/R2015a/stateflow/ug/how-to-define-enumerated-data-in-a-stateflow-chart.html
https://www.mathworks.com/help/releases/R2015a/stateflow/ug/how-to-define-enumerated-data-in-a-stateflow-chart.html
https://www.mathworks.com/help/releases/R2015a/stateflow/ug/set-breakpoints-to-debug-charts.html

R2014b

Version: 8.4

New Features

Bug Fixes

Version History

17

Comment-out capability to disable objects in the state diagram
You can now comment out Stateflow objects to exclude the objects from simulation. Use commenting
to:

• Debug a chart by making minor changes between simulation runs.
• Test and verify the effects of objects on simulation results.
• Create incremental changes for rapid iterative design.

For more information, see Commenting Stateflow Objects in a Chart.

Window to manage conditional breakpoints and watch chart data
The new Stateflow Breakpoints and Watch Data window provides easier management of all Stateflow
breakpoints and watch data. In the Breakpoints tab, you can:

• Set conditions on breakpoints.
• Disable and clear individual breakpoints.
• View the hit count for breakpoints.

In the Watch Data tab, you can:

• Watch data at any point in a simulation.
• View data values in different library instances at the same time.
• View highlights on data that changed from the last time simulation paused.

This new window replaces the Stateflow Debugger. You now control Stateflow error checking options
(Transition Conflict, Data Range, and Detect Cycles) from Simulation > Debug > Stateflow Error
Checking Options. For more information, see Manage Stateflow Breakpoints and Watch Data.

Version History
Breakpoints and watch data are no longer stored with the model. The breakpoints and watch data are
associated with the MATLAB session. You can save the current list to a file and reload it to another
session to restore the list of breakpoints and watch data.

Simulink blocks that create and call functions across Simulink and
Stateflow
You can call the new Simulink Function block from inside Stateflow charts. The new Simulink Caller
blocks can also call exported Stateflow functions.

User-controlled enumeration size for active state output
You can now set the storage type and size for enumerations created with active state output. Choose
the storage type in Base storage type for automatically created enumerations: under the
Optimization > Stateflow pane of the Configuration Parameters dialog box. If you need a smaller
memory footprint, use this option.

R2014b

17-2

https://www.mathworks.com/help/releases/R2014b/stateflow/ug/comment-out-stateflow-objects.html
https://www.mathworks.com/help/releases/R2014b/stateflow/ug/manage-breakpoints-and-watch-data.html

Faster chart simulation and animation
Lightning Fast animation provides the fastest simulation speed by buffering the highlights. During
Lightning Fast animation, the more recently highlighted objects are in a bolder, lighter blue. These
highlights fade away as simulation time progresses. For more information, see Animate Stateflow
Charts.

Improved state transition matrix
The state transition matrix has traceability of cells to the state transition table. You can interact with
the state transition matrix to search and filter states. You can easily view the conditions and events of
the state machine. For more information, see View State Reactions with State Transition Matrix.

Active state output not allowed with Initialize Outputs Every Time
Chart Wakes Up

Version History
Do not set the chart property Initialize Outputs Every Time Chart Wakes Up on charts that use
active state output. The behavior is unpredictable.

17-3

https://www.mathworks.com/help/releases/R2014b/stateflow/ug/animate-stateflow-charts.html
https://www.mathworks.com/help/releases/R2014b/stateflow/ug/animate-stateflow-charts.html
https://www.mathworks.com/help/releases/R2014b/stateflow/ug/view-state-transition-matrix.html

R2014a

Version: 8.3

New Features

Bug Fixes

Version History

18

Intelligent tab completion in charts
Stateflow provides context-sensitive editing assistance with tab completion. You can quickly select
syntax-appropriate options for keywords, data, event, and function names.

Single chart block in Stateflow library with MATLAB as the default
action language
In R2014a, there is one Stateflow Chart block that defaults to using MATLAB as the action language.
You can modify the action language of a chart to use C syntax. For more information, see Modify the
Action Language for a Chart.

Bus signal logging in charts
You can now log bus signals in Stateflow charts.

Output of leaf-state activity to Simulink
In previous releases, you could output self and child activity to Simulink. In R2014a, you can also
output leaf-state activity using automatically managed enumerations.

UTF-16 character support for Stateflow blocks
You can use international characters when naming these Stateflow blocks:

• Charts
• State Transition Tables
• Truth Tables

Syntax auto-correction inserts explicit cast for literals
The auto-correction for MATLAB syntax now inserts explicit casts for literals.

Improved algebraic loop handling in Simulink can affect Stateflow
blocks

Version History
A model with a Bus Selector block between two Stateflow exported graphical functions that share the
same memory can produce different results.

Typedef generation management for imported buses and
enumerations
For MATLAB functions and charts, you can manage generation of typedef definitions for imported
bus and enumeration types in the Configuration Parameters dialog box, on the Simulation Target

R2014a

18-2

https://www.mathworks.com/help/releases/R2014a/stateflow/ug/modify-the-action-language-for-a-chart.html
https://www.mathworks.com/help/releases/R2014a/stateflow/ug/modify-the-action-language-for-a-chart.html

pane. You can choose to provide the typedef definition in a custom header file, or have Simulink
generate the definitions.

Updated Search & Replace tool
The Stateflow Search & Replace tool has been updated to simplify the controls and improve the
color selection of the interface.

Support of complex data types with data store memory
Stateflow now supports complex data types for use with Data Store Memory.

Streamlined MEX compiler setup and improved troubleshooting
You no longer have to use mex -setup to choose a compiler. mex automatically locates and uses a
supported installed compiler. You can use mex -setup to change the default compiler. See Changing
Default Compiler.

Moore chart outputs cannot depend on inputs

Version History
In previous versions of Stateflow, in Moore charts that used MATLAB as the action language, you
could assign an output that was dependent on an input. This construct violates Moore semantics, and
Stateflow now generates a compiler error. For more information, see Design Considerations for
Moore Charts.

Transition conflict error checking only on C charts with implicit
execution order
Transition Conflict in Error checking options of the Stateflow debugger is only valid for C charts
that use implicit transition execution ordering. The debugger does not check transition ordering for
charts that use MATLAB as the action language, or C charts with explicit transition ordering.

18-3

https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
https://www.mathworks.com/help/releases/R2014a/stateflow/ug/design-considerations-for-moore-charts.html
https://www.mathworks.com/help/releases/R2014a/stateflow/ug/design-considerations-for-moore-charts.html

R2013b

Version: 8.2

New Features

Bug Fixes

19

LCC compiler included on Windows 64-bit platform for running
simulations
The Windows® 64-bit platform now includes LCC-win64 as the default compiler for running
simulations. You no longer have to install a separate compiler for simulation in Stateflow and
Simulink. You can run simulations in Accelerator and Rapid Accelerator modes using this compiler.

Note The LCC-win64 compiler is not available as a general compiler for use with the command-line
MEX in MATLAB. It is a C compiler only. You cannot use it for SIL/PIL modes.

LCC-win64 is used only when another compiler is not configured in MATLAB. To build MEX files, you
must install a compiler. See https://www.mathworks.com/support/compilers/
current_release/.

Tab completion for keywords and data in charts
Press the Tab key for automatic word completion of keywords, data, and function names in charts.

Pattern Wizard for inserting logic patterns into existing flow charts
You can now use the Pattern Wizard to add loop or decision logic to a previously created pattern in a
flow chart.

Absolute time temporal logic keywords, msec and usec, for specifying
short time intervals
You can now specify milliseconds and microseconds for absolute time temporal logic in charts.

Continuous time support in charts with MATLAB as the action
language
Charts that use MATLAB as the action language now support continuous time mode with zero
crossing detection.

Content preview for Stateflow charts
When a chart is closed, you can preview the content of Stateflow charts in Simulink. You can see an
outline of the contents of a chart. During simulation you can see chart animation. When a chart is
open, you can preview the content of subcharts, Simulink functions, and graphical functions. For
details, see Content Preview for Stateflow Objects.

For example, the Temporal Logic chart uses content preview, and the Without Temporal Logic chart
does not.

R2013b

19-2

https://www.mathworks.com/help/releases/R2013b/stateflow/ug/editor-operations.html#bt0y9hs

Code generation improvement for absolute-time temporal logic in
charts with discrete sample times
For charts with discrete sample time that are not inside a triggered or enabled subsystem, absolute-
time temporal operators generate improved code. The generated code now uses integer counters to
track time instead of the Simulink time counter. This allows more efficient code, as well as enabling
this code for use in software-in-the-loop(SIL) and processor-in-the-loop(PIL) simulation modes.

19-3

R2013a

Version: 8.1

New Features

Bug Fixes

Version History

20

Output of child-state activity to Simulink using automatically
managed enumerations
In previous releases, you could output whether or not a state is active by selecting Output state
activity in the State properties dialog box. In R2013a, you can now also output to Simulink the child
activity of a chart, state, atomic subchart, or State Transition Table as an enumeration.

Masking of Stateflow block to customize appearance, parameters, and
documentation
In R2013a, you can mask a chart, Truth Table block, or State Transition Table block directly. In
previous releases, you had to place the Stateflow block in a subsystem, and then mask that
subsystem.

Version History
In R2013a, MATLAB scripts or functions that rely on the MaskType property of Stateflow blocks need
to be updated. For example, get_param(handle_to_SF_block, 'MaskType') now returns an
empty value instead of 'Stateflow'. For backward compatibility, using
find_system('MaskType','Stateflow') returns all the Stateflow blocks. However, use the
Stateflow API instead, as a better practice. See Overview of the Stateflow API. Do not create masks
with Mask Type “Stateflow”, because the behavior is unpredictable.

Option to parse Stateflow chart to detect syntax errors and
unresolved symbols without updating diagram
You can detect unresolved symbols in a chart without updating the diagram or starting simulation.
The Stateflow parser can access all required information for detecting unresolved symbols, such as
enumerated data types and exported graphical functions from other charts.

Propagation of parameter names to generated code for improved
code readability
In previous releases, Stateflow parameters in the generated code were not derived from the
parameter names. In R2013a, parameter names appear unchanged in the code, which provides better
traceability between the chart and the generated code.

Complex inputs and outputs for exported graphical functions
Exported graphical functions now support inputs and outputs of complex type.

Use of type(data_name) for specifying output data type disallowed for
buses
If your chart specifies output data type using the expression type(data_name), you get an error if
data_name is of bus type.

R2013a

20-2

https://www.mathworks.com/help/releases/R2013a/stateflow/api/overview-of-the-stateflow-api.html

Version History
A model created in a previous release might cause an error in R2013a if the chart contains an output
with the data type specification type(data_name) if data_name is of bus type.

New and enhanced examples
The following demo has been added in R2013a:

Example... Shows how you can...
sf_trafffic_light Model a traffic light system with active state

output.

The following demos have been enhanced in R2013a:

Example... Shows how you can...
sf_aircraft Model now uses active state output.

20-3

https://www.mathworks.com/help/releases/R2013a/stateflow/examples/modeling-an-intersection-of-two-1-way-streets-using-stateflow.html
https://www.mathworks.com/help/releases/R2013a/stateflow/examples/fault-detection-control-logic-in-an-aircraft-elevator-control-system.html

R2012b

Version: 8.0

New Features

Bug Fixes

Version History

21

New editor for Stateflow charts and Simulink models with tabbed
windows and model browser tree
The new editor unifies Stateflow and Simulink functionality. The Stateflow Editor shares most of the
same menu items with the Simulink Editor, and provides the following enhancements:

• Unified canvas, for editing Stateflow charts and Simulink models in the same window.
• Tabbed windows, for accessing Stateflow charts in the same context as Simulink models.
• Model Browser tree, for browsing the complete model hierarchy, including Stateflow charts.
• Cross-platform consistency, for accessing the same functionality on Windows, UNIX®, and Mac

platforms.

Stateflow Editor menu bar changes

Menu bar changes in the new Stateflow Editor are the same as for the new Simulink Editor.

Stateflow Editor context menu changes

All changes for the following three Stateflow Editor context menus are the same as for the new
Simulink Editor:

• From the canvas
• From a block
• From a signal

The following sections describe changes to context menus that are specific to Stateflow:

• “From a chart” on page 21-2
• “From a function” on page 21-3
• “From a transition” on page 21-3
• “From a state” on page 21-3

From a chart

R2012a Stateflow Editor Context Menu New Stateflow Editor Equivalent
Patterns Add Patterns.
Add Note Not available from context menu.

From the palette, select the Annotation icon

().
Cut

Copy

Not available from context menu.

Use the context menu for an item in the chart
that you want to cut or copy.

Back

Forward

Go To Parent

Not available from context menu.

From the menu bar, use View > Navigate.

R2012b

21-2

R2012a Stateflow Editor Context Menu New Stateflow Editor Equivalent
Execution Order Not available from context menu.

From the menu bar, use Chart > Parameters.
Font Size

Arrowhead Size

Not available from context menu.

From the menu bar, use Chart > Format.
Format > Align Items

Format > Distribute Items

Format > Resize Items

Not available from context menu.

From the menu bar, use Chart > Arrange.

Fit To View Not available from context menu.

From the menu bar, use View > Zoom.
Breakpoints Set Breakpoints on Chart Entry and Clear

Breakpoints.
Debug Not available from context menu.

From the menu bar, use Simulation > Debug.
Find Not available from context menu.

From the menu bar, use Edit > Find.
Edit Library Library Link.

From a function

In the R2012a Stateflow Editor, right-clicking a Stateflow function displays the chart context menu. In
the new Stateflow Editor, each kind of Stateflow function (for example, graphical function or Truth
Table) has its own context menu.

From a transition

In the R2012a Stateflow Editor, right-clicking a Stateflow transition displays the chart context menu.
In the new Stateflow Editor, a transition has its own context menu.

There is no longer a Smart menu item. In the R2012a Stateflow Editor, the Smart menu item
enabled smart transitions. Smart transitions have ends that slide around the surfaces of states and
junctions. When the source and/or destination objects are moved and resized in the chart, these
transitions use sliding and other behaviors to enable you to produce an aesthetically pleasing chart.
The new Stateflow Editor uses smart transitions all the time.

From a state

In the R2012a Stateflow Editor, right-clicking a Stateflow state displays the chart context menu. In
the new Stateflow Editor, a state has its own context menu.

Stateflow keyboard and mouse shortcut changes

The new Simulink Editor and Stateflow Editor use the same navigation shortcuts.

21-3

Task R2012a Stateflow Editor
Shortcut

New Stateflow Editor
Equivalent

Display the parent of the
currently displayed chart or
subchart.

.. (two periods) To navigate to the parent, use the
up arrow on the toolbar or use
the Escape key.

Zoom in by an incremental
amount.

+ or r or R Use mouse scroll wheel or Ctrl+
+ (the plus sign)

Zoom out by an incremental
amount.

- or v or V Use mouse scroll wheel or Ctrl+-
(the minus sign).

Fit chart to screen. 0 or Space Bar Use Space Bar or from the menu
bar, use View > Zoom > Fit To
View.

Zoom to normal view. 1 Alt+1
Move the current view down
within the full chart.

2 Use the Stateflow Editor scroll
bars.

Move the current view down and
right within the full chart.

3 Use the Stateflow Editor scroll
bars.

Move the current view left within
the full chart.

4 Use the Stateflow Editor scroll
bars.

Fit the currently selected object
to full view. If no object is
selected, the chart is fit to full
view.

5 Not yet supported

Move the current view right
within the full chart.

6 Use the Stateflow Editor scroll
bars.

Move the current view up and
left within the full chart.

7 Use the Stateflow Editor scroll
bars.

Move the current view up within
the full chart.

8 Use the Stateflow Editor scroll
bars.

Move the current view up and
right within the full chart.

9 Use the Stateflow Editor scroll
bars.

Editing assistance through smart guides, drag margins, transition
indicator lines, and just-in-time error notifications
The new Stateflow Editor makes it easier to create and modify charts by providing these
enhancements:

• Smart guides, for aligning objects interactively as you place them in the chart.
• Drag margins, which allows all objects within a container to move together. The mouse cursor

changes to a double-arrow when you are within the drag margins of an object.
• Transition indicator lines, for identifying the label associated with a selected transition.
• Just-in-time error notification, for flagging illegal object placement during editing (for example,

when two states overlap).

R2012b

21-4

State transition tables that provide tabular interface to model state
machines
A state transition table is an alternative way of expressing modal logic. Instead of drawing states and
transitions graphically in a Stateflow chart, you express the modal logic in tabular format. Stateflow
automatically generates a graphical state chart from the tabular format, so you can use animation
and in-chart debugging.

Benefits of using state transition tables include:

• Ease of modeling train-like state machines, where the modal logic involves transitions from one
state to its neighbor

• Concise, compact format for a state machine
• Reduced maintenance of graphical objects

When you add or remove states from a chart, you have to rearrange states, transitions, and
junctions. When you add or remove states from a state transition table, you do not have to
rearrange any graphical objects.

The new block is available in sflib. You can add the block to a new model by entering sfnew('-
STT') at the MATLAB command line.

For more information, see Tabular Expression of Modal Logic and Model Bang-Bang Controller with a
State Transition Table.

MATLAB language for state and transition labels with chart syntax
auto-correction
In R2012b, you can use MATLAB as the action language to program Stateflow charts. Benefits of
using MATLAB as the action language include:

• MATLAB syntax support in state labels and transition labels

You can use the same MATLAB code that you write in a script or enter at the command line.
• Automatic identification of unresolved symbols in the new Symbol Wizard

When you update the diagram or start simulation, the Symbol Wizard provides a list of unresolved
data in your chart and infers the scope.

• Automatic inference of size, type, and complexity for data in the chart, based on usage (unless
explicitly defined in the Model Explorer)

• Support for control flow logic in state labels

For example, you can write if-else statements directly inside state actions:

StateA
du:
if (x > 0)
 x = x + 1;
else
 x = x + 2;
end

You do not need to create a separate graphical function to define the flow logic.

21-5

https://www.mathworks.com/help/releases/R2012b/stateflow/tabular-expression-of-modal-logic.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/tutorial-modeling-a-bang-bang-controller-for-a-boiler-plant.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/tutorial-modeling-a-bang-bang-controller-for-a-boiler-plant.html

• Automatic correction of common syntax errors.

For example, if you type x++ on a transition segment, the expression is automatically converted to
the correct MATLAB syntax, {x=x+1}.

For more information, see MATLAB Syntax for States and Transitions and Model Event-Driven System
Using MATLAB Expressions.

In-chart debugging with visual breakpoints and datatips
In R2012b, the Stateflow debugger includes the following enhancements:

• Display of data values when hovering over a state or transition

When you hover over a state or transition, all data values in scope for that object appear in a
popup list.

• Step Over and Step Out options on the debugger

R2012b

21-6

https://www.mathworks.com/help/releases/R2012b/stateflow/matlab-syntax-for-states-and-transitions.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/programming-your-chart-with-matlab-syntax.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/programming-your-chart-with-matlab-syntax.html

• When you click Step Over, you can skip the entire execution of a function call when the chart
is in debug mode.

• When you click Step Out, you can skip the rest of the execution for a function call when the
chart is in debug mode.

• Badges on graphical chart objects to indicate breakpoint settings

21-7

• When you hover over the badge on an object, you see a list of breakpoints in a popup list.
• To modify breakpoint settings, you can click the badge on an object instead of opening the

properties dialog box.

See Set Breakpoints to Debug Charts.

Version History
In R2012b, you no longer need to launch the Stateflow debugger to stop chart execution at active
breakpoints. Lifting this restriction means that during simulation, chart execution always stops at
active breakpoints during simulation, even if the debugger is not running. To prevent unintended
interruption of chart execution, Stateflow software automatically disables — but does not delete —
existing breakpoints for all objects in charts created in earlier releases. Disabled breakpoints appear
as gray badges; you can enable them as needed. See Relationship Between Breakpoints and the
Debugger and Set Local Breakpoints.

In addition, in models created in earlier versions, Stateflow software removes When Transition is
Tested breakpoints from transitions that do not have conditions. Starting in R2012b, you can set
only When Transition is Valid breakpoints on transitions with no conditions.

Reuse of graphical functions with atomic boxes
In R2012b, you can use atomic boxes to reuse graphical functions across multiple charts and models.
With atomic boxes, you can reuse models with graphical functions multiple times as referenced
blocks in a top model. Because there are no exported graphical functions, you can use more than one
instance of that referenced block in the top model.

For more information, see Reusing Functions with an Atomic Box.

Fewer restrictions for converting states to atomic subcharts
In R2012b, you can convert a state to an atomic subchart when the state accesses chart local data
that has any of the following properties:

• [M N] size, where M and N are parameters that represent the data dimensions
• One of the following non-built-in data types:

• Bus type
• Alias type
• Fixed-point type of nonzero fraction length, such as fixdt(1,16,3)

In previous releases, conversion of a state to an atomic subchart required that the chart local data
have a static, deterministic size and a built-in data type.

Diagnostic for undirected local event broadcasts
In R2012b, you can detect undirected local event broadcasts using a new diagnostic in the
Diagnostics > Stateflow pane of the Model Configuration Parameters dialog box. You can set the
diagnostic level of Undirected event broadcasts to none, warning, or error.

R2012b

21-8

https://www.mathworks.com/help/releases/R2012b/stateflow/ug/set-breakpoints-to-debug-charts.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/relationship-between-breakpoints-and-the-debugger.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/relationship-between-breakpoints-and-the-debugger.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/set-breakpoints-to-debug-charts.html#f5-1019650
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/reusing-graphical-functions-with-atomic-boxes.html

Undirected local event broadcasts can cause unwanted recursive behavior in a chart and inefficient
code generation. You can avoid this behavior by using the send operator to create directed local
event broadcasts. For more information, see Guidelines for Avoiding Unwanted Recursion in a Chart
and Broadcasting Events to Synchronize States.

Version History
For new models created in R2012b and existing models created in previous releases, the default
diagnostic setting is warning to discourage the use of undirected local event broadcasts. Models that
did not warn in previous releases might now issue a warning because the chart contains an
undirected local event broadcast.

Diagnostic for transition action specified before condition action
In R2012b, you can detect specified transition actions before specified condition actions in transition
paths, using a new diagnostic in the Diagnostics > Stateflow pane of the Model Configuration
Parameters dialog box. You can set the diagnostic level of Transition action specified before
condition action to none, warning, or error.

21-9

https://www.mathworks.com/help/releases/R2012b/stateflow/ug/guidelines-for-avoiding-unwanted-recursion-in-a-chart.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/broadcasting-events-to-synchronize-states.html

In a transition path with multiple transition segments, a specified transition action for a transition
segment does not execute until the final destination for the entire transition path becomes valid. A
specified condition action for a transition segment executes as soon as the condition becomes true.
When a transition with a specified transition action precedes a transition with a specified condition
action in the same transition path, the condition action for the succeeding transition might execute
before the transition action for the preceding transition. When this diagnostic warns for transition
paths containing transition actions specified before condition actions, you can identify out-of-order
execution.

For more information, see Transitions.

Version History
In previous releases, the specification of transition actions before condition actions causes an error
during simulation. To suppress this error for all models in future MATLAB sessions, use the following
command:

sfpref('ignoreUnsafeTransitionActions',1);

In R2012b, the ignoreUnsafeTransitionActions preference does not exist and the default value
of the Transition action specified before condition action diagnostic is warning. The warning
occurs for all instances of transition actions specified before condition actions, even if you changed
the ignoreUnsafeTransitionActions preference in a previous release.

Parentheses to identify function-call output events on chart and truth
table block icons
In R2012b, function-call output events appear on Chart and Truth Table block icons with parentheses
after the event name. This appearance is consistent with the rendering of input triggers on Function-
Call Subsystem block icons.

Resolution of qualified state and data names
The algorithm for resolving a qualified state or data name performs a localized search for states and
data that match the given path by looking in each level of the Stateflow hierarchy between the chart
level and the parent of the state or data. The algorithm does not perform an exhaustive search of all
states and data in the entire chart.

In previous releases, a warning would appear when the search resulted in no matches or multiple
matches. In R2012b, this warning has changed to an error. For more information, see Checking State
Activity and Using Dot Notation to Identify Data in a Chart.

Version History
Stateflow charts created in earlier releases now generate an error instead of a warning when the
search for a qualified state or data name results in no matches or multiple matches.

R2012b

21-10

https://www.mathworks.com/help/releases/R2012b/stateflow/ug/transitions.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/checking-state-activity.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/checking-state-activity.html
https://www.mathworks.com/help/releases/R2012b/stateflow/ug/using-dot-notation-to-identify-data-in-a-chart.html

Support for simulating charts in a folder that has the # symbol on 32-
bit Windows platforms
In R2012b, on 32-bit Windows platforms, you can use the lcc compiler to simulate charts in a folder
with the # symbol in its name.

Mac screen menubar enabled when Stateflow is installed
In previous releases, the Mac screen menubar was disabled when Stateflow was installed. This
behavior was necessary to enable the Stateflow Editor menu options to work normally on a Mac.

In R2012b, the Mac screen menubar is enabled when Stateflow is installed.

Option to print charts to figure windows no longer available
In R2012b, printing the current view of a chart to a figure window is no longer available.

Version History
To print the current view of a chart, you can send the output directly to a printer or to a file. Available
file formats include PS, EPS, JPG, PNG, and TIFF.

End of Broadcast breakpoint no longer available for input events
In R2012b, the option to set a breakpoint at End of Broadcast is no longer available for input
events.

Version History
In previous releases, you could set both Start of Broadcast and End of Broadcast breakpoints for
input events. Starting in R2012b, Stateflow ignores End of Broadcast breakpoints on input events
for existing models.

Boxes can no longer be converted to states
You can no longer convert a Stateflow box object to a state object and vice versa.

Version History
In previous releases, you were able to convert a box object to a state object and vice versa. You must
now delete the box or state and replace it with a new box or state with the same name.

21-11

R2012a

Version: 7.9

New Features

Bug Fixes

Version History

22

API Method for Highlighting Chart Objects
You can use the new highlight method to highlight one of the following objects in a chart:

• Box
• State
• Atomic subchart
• Transition
• Junction
• Graphical function
• MATLAB function
• Simulink function
• Truth table function

For more information, see highlight.

API Method for Finding Transitions That Terminate on States, Boxes,
or Junctions
You can use the new sinkedTransitions method to find all inner and outer transitions whose
destination is a state, box, or junction.

For more information, see sinkedTransitions.

API Property That Specifies the Destination Endpoint of a Transition
Transition objects now have a DestinationEndPoint property that describes the location of the
transition endpoint at the destination object.

For more information, see Transition Properties.

Structures and Enumerated Data Types Supported for Inputs and
Outputs of Exported Graphical Functions
In R2012a, inputs and outputs of exported graphical functions can use enumerated data types or
structures. For more information, see Rules for Exporting Chart-Level Graphical Functions.

Mappings Tab in Atomic Subchart Properties Dialog Lists All Valid
Scopes
In R2012a, the Mappings tab in the atomic subchart properties dialog lists all valid scopes for data
and event mapping. All valid scopes appear, regardless of whether a data or event of that scope exists
in the chart.

In previous releases, the Mappings tab listed only the scopes of data and events that existed in the
chart and omitted any scope that did not exist. For more information, see Mapping Variables for
Atomic Subcharts.

R2012a

22-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/api/highlight.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/api/sinkedtransitions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/api/bs4a4up.html#f20-13392
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f9-59131.html#brpd0m0
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bscpeun.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bscpeun.html

Full Decision Coverage When Suppressing Default Cases in the
Generated Code
In R2011b, selecting Suppress generation of default cases for Stateflow switch statements if
unreachable in the Configuration Parameters dialog box would result in decision coverage of less
than 100%. In R2012a, you get full decision coverage when suppressing default cases in the
generated code for your Stateflow chart.

For more information about decision coverage, see Model Coverage for Stateflow Charts in the
Simulink Verification and Validation™ documentation.

Specification of Custom Header Files in the Configuration Parameters
Dialog Box Required for Enumerated Types
If data in your chart uses an enumerated type with a custom header file, include the header
information in the Simulation Target > Custom Code pane of the Configuration Parameters dialog
box. In the Header file section, add the following statement:

#include "<custom_header_file_for_enum>.h"

For more information, see Rules for Using Enumerated Data in a Stateflow Chart in the Stateflow
User's Guide.

Version History
In earlier releases, custom header files for enumerated types did not need to appear in the
Configuration Parameters dialog box.

Removal of ‘Use Strong Data Typing with Simulink I/O’ in a Future
Release
In a future release, the Use Strong Data Typing with Simulink I/O check box will be removed
from the Chart properties dialog box because strong data typing will always be enabled.

When this check box is cleared, the chart accepts and outputs only signals of type double. This
setting ensures that charts created prior to R11 can interface with Simulink input and output signals
without type mismatch errors. For charts created in R11 and newer releases, disabling strong data
typing is unnecessary. Also, many Stateflow features do not work when a chart disables strong data
typing.

Version History
In R2012a, updating the diagram causes a parse warning to appear when a chart disables strong data
typing. To prevent the parse warning, select the Use Strong Data Typing with Simulink I/O check
box in the Chart properties dialog box.

22-3

https://www.mathworks.com/help/releases/R2012a/toolbox/slvnv/ug/f5-1008805.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brp7mvu.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

R2011b

Version: 7.8

New Features

Bug Fixes

Version History

23

Chart Property to Control Saturation for Integer Overflow
A new chart property, Saturate on integer overflow, enables you to control the behavior of data
with signed integer types when overflow occurs. The check box appears in the Chart properties
dialog box.

Check Box When to Use This Setting Overflow Handling Example of a Result
Selected Overflow is possible for data

in your chart and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

An overflow associated with a
signed 8-bit integer saturates
to –128 or +127.

Cleared You want to optimize
efficiency of the generated
code.

The behavior depends on the
C compiler you use for
generating code.

The number 130 does not fit
in a signed 8-bit integer and
wraps to –126.

Arithmetic operations for which you can enable saturation protection are:

• Unary minus: –a
• Binary operations: a + b, a – b, a * b, a / b, a ^ b
• Assignment operations: a += b, a –= b, a *= b, a /= b

For new charts, this check box is selected by default. When you open charts saved in previous
releases, the check box is cleared to maintain backward compatibility.

For more information, see Handling Integer Overflow for Chart Data in the Stateflow User's Guide.

Enhanced User Interface for Logging Data and States
A new Logging tab on the Data and State properties dialog boxes enables you to log signals in the
same way that you do in Simulink. For more information, see Logging Data Values and State Activity
in the Stateflow User's Guide.

Control of Default Case Generation for Switch-Case Statements in
Generated Code
You can specify whether or not to always generate default cases for switch-case statements. This
optimization works on a per-model basis and applies to the code generated for a state that has
multiple substates. Use the following check box on the Code Generation > Code Style pane of the
Configuration Parameters dialog box:

R2011b

23-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bs1ecin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsy2b2_.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Check Box When to Use This Setting Format of Switch-Case
Statements

Selected Provide better code coverage by
ensuring that every branch in
the generated code is falsifiable.

Exclude the default case when it
is unreachable.

Cleared Ensure MISRA C® compliance
and provide a fallback in case of
RAM corruption.

Always include a default case.

This readability optimization is available for embedded real-time (ERT) targets and requires a license
for Embedded Coder software. For new models, this check box is cleared by default. When you open
models saved in previous releases, the check box is also cleared to maintain backward compatibility.

For more information, see Code Generation Pane: Code Style.

Detection of State Inconsistency Errors at Compile Time Instead of
Run Time
In R2011b, you can detect inconsistency errors earlier in the model development process. If you
select Edit > Update Diagram in the Simulink Editor, you get an error when Stateflow statically
detects that there are no active children during execution of a chart or a state.

Version History
In previous releases, static detection of these inconsistency errors did not occur until run time.

Ability to Model Persistent Output Data for Mealy and Moore Charts
In previous releases, Mealy and Moore charts automatically applied the initial value of outputs every
time the chart woke up. Both chart types ensured that outputs did not depend on previous values of
outputs by enforcing the chart property Initialize Outputs Every Time Chart Wakes Up.

In R2011b, this restriction has been lifted. You can now choose whether or not to initialize outputs
every time a Mealy or Moore chart wakes up. If you disable this chart property, you enable latching of
outputs (carrying over output values computed in previous time steps). This enhancement enables
you to model persistent output data for Mealy and Moore charts.

23-3

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g1r.html

For more information, see Building Mealy and Moore Charts in the Stateflow User's Guide.

Control of Diagnostic for Multiple Unconditional Transitions from One
Source
You can control the behavior of the Stateflow diagnostic that detects multiple unconditional
transitions from the same state or the same junction. Set Transition shadowing to none, warning,
or error on the Diagnostics > Stateflow pane of the Configuration Parameters dialog box.

For more information, see Diagnostics Pane: Stateflow in the Simulink Graphical User Interface
documentation.

MEX Compilation with Microsoft Windows SDK 7.1 Now Supported
You can use Microsoft® Windows Software Development Kit (SDK) 7.1 as a MEX compiler for
simulation on 32- and 64-bit Windows machines. For a list of supported compilers, see Choosing a
Compiler in the Stateflow User's Guide.

Simulation Supported When the Current Folder Is a UNC Path
In R2011b, you can simulate models with Stateflow blocks when the current folder is a UNC path. In
previous releases, simulation of those models required that the current folder not be a UNC path.

Removal of the Coverage Tab from the Stateflow Debugger
In R2011b, the Coverage tab of the Stateflow debugger has been removed. In previous releases,
clicking the Coverage tab would show the following message:

Coverage feature obsoleted. Please use Simulink Verification and Validation
in order to get complete coverage of Simulink/Stateflow objects.

R2011b

23-4

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqtktf3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bsiinya-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brgsh9t.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brgsh9t.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Test Point Selection Moved to the Logging Tab in Properties Dialog
Boxes
The Test point check box has moved from the General tab to the Logging tab on State and Data
properties dialog boxes.

23-5

R2011a

Version: 7.7

New Features

Bug Fixes

Version History

24

Migration of Stateflow Coder Features to New Product
In R2011a, all functionality previously available for the Stateflow Coder product is now part of the
new Simulink Coder product.

Embedded MATLAB Functions Renamed as MATLAB Functions in
Stateflow Charts
In R2011a, Embedded MATLAB functions have been renamed as MATLAB functions in Stateflow
charts. This name change has the following effects:

• The function box now shows MATLAB Function instead of eM in the upper-left corner.
• Traceability comments in the generated code for embedded real-time targets now use MATLAB

Function instead of Embedded MATLAB Function.
• For truth table functions in your chart, the Settings > Language menu now provides Stateflow

Classic and MATLAB as the choices.

Scripts that use the Stateflow.EMFunction constructor method continue to work. All properties
and methods for this object remain the same.

Use of MATLAB Expressions to Specify Data Size
In R2011a, you can enter MATLAB expressions in the Size field of the Data properties dialog box:

R2011a

24-2

This enhancement enables you to use additional constructs, such as:

• Variables in the MATLAB base workspace
• Enumerated values on the MATLAB search path
• Expressions that use fi objects

For more information, see Sizing Stateflow Data in the Stateflow User's Guide.

Version History
For the Size field, name conflict resolution works differently from previous releases. In R2011a, when
multiple variables with identical names exist, the variable with the highest priority is used:

1 Mask parameters
2 Model workspace
3 MATLAB base workspace
4 Stateflow data

In previous releases, Stateflow data took precedence over all other variables with identical names.

Ability to Change Data Values While Debugging
Previously, you could not change the values of Stateflow data while debugging a chart. Now you can
change data values while the chart is in debug mode and see how simulation results change. For
more information, see Changing Data Values During Simulation in the Stateflow User's Guide.

Ability to Debug a Single Chart When Multiple Charts Exist in a Model
When Enable debugging/animation is enabled on the Simulation Target pane of the
Configuration Parameters dialog box, this setting applies to all charts in your model. In R2011a, you
can enable or disable debugging on a chart-by-chart basis, using the Debug menu in the Stateflow
Editor:

24-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-30422.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsq1usn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

This enhancement enables you to focus on debugging a single chart, instead of having to debug all
charts in the model. For details, see How to Enable Debugging for Charts in the Stateflow User's
Guide.

You can also clear all breakpoints for a specific chart by selecting Debug > Clear All Breakpoints
in the Stateflow Editor. For more information, see Clearing All Breakpoints in the Stateflow User's
Guide.

In previous releases, you could open the debugger by selecting Tools > Debug in the Stateflow
Editor. In R2011a, this menu option has moved to Debug > Stateflow Debugger.

Support for Input Events in Atomic Subcharts
In R2011a, you can use input events in atomic subcharts. For more information, see Making States
Reusable with Atomic Subcharts in the Stateflow User's Guide.

R2011a

24-4

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#bsu66g6
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#brfrmb4
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsbm40z-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsbm40z-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Control of Generated Function Names for Atomic Subcharts
In R2011a, the generated function names for atomic subcharts follow the identifier naming rules for
subsystem methods on the Code Generation > Symbols pane of the Configuration Parameters
dialog box:

This enhancement enables you to control the format of generated function names for atomic
subcharts when building an embedded real-time (ERT) target. For more information, see Generating
Reusable Code for Unit Testing in the Stateflow User's Guide.

Enhanced Data Sorting in the Stateflow Debugger
In previous releases, the Stateflow debugger sorted data by scope first, before alphabetically listing
data. In R2011a, the debugger sorts data alphabetically in the Browse Data section, without regard
to scope. This enhancement helps you find specific data quickly when your chart contains many
variables, for example, over a hundred.

Data sorting depends solely on the variable name and not on hierarchy. For example, if you have
chart-parented data named arrayOut and state-parented data named arrayData, the list that
appears in the Browse Data section is:

S.arrayData
arrayOut

The state name has no effect on data sorting.

For more information, see Watching Data Values During Simulation in the Stateflow User's Guide.

24-5

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsc7p81.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsc7p81.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-1022012.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Option to Maintain Highlighting of Active States After Simulation
In R2011a, you can highlight the states that are active at the end of a simulation by selecting
Maintain Highlighting in the Stateflow debugger.

This enhancement enables you to inspect the active states of a chart after simulation ends, without
having to use the SimState method highlightActiveStates. For more information, see Animating
Stateflow Charts in the Stateflow User's Guide.

Right-Click Options for Setting Local Breakpoints
For graphical chart objects, you can now right-click the object to set local breakpoints. This
enhancement enables you to set breakpoints more quickly, without having to open the properties
dialog box for:

• Charts
• States
• Transitions
• Graphical functions
• Truth table functions

For more information, see Setting Local Breakpoints in the Stateflow User's Guide.

R2011a

24-6

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#braiixf
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#braiixf
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#f5-1019650
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

New Signal Logging Format That Simplifies Access to States and Local
Data
You can now select a format for signal logging data. Use the Signal logging format parameter on
the Data Import/Export pane of the Configuration Parameters dialog box to specify the format:

• ModelDataLogs — Simulink.ModelDataLogs format (the default; before R2011a, it was the
only supported format)

• Dataset — Simulink.SimulationData.Dataset format (new in R2011a)

The Dataset format:

• Supports logging multiple data values for a given time step, which enhances signal logging of
Stateflow data

• Uses MATLAB timeseries objects to store logged data (rather than Simulink.Timeseries
and Simulink.TsArray objects), which enables you to work with logged data in MATLAB
without a Simulink license

• Avoids the limitations of the ModelDataLogs format, which Bug Report 495436 describes

For more information, see Logging Data Values and State Activity.

Version History
In previous releases, selecting Enable debugging/animation on the Simulation Target pane of the
Configuration Parameters dialog box would implicitly set all data and states in a Stateflow chart to be
test points. In R2011a, you must select the Test point check box explicitly for data and states to
appear in the Signal Selector dialog box of a Scope or Floating Scope block.

If you load models from previous releases that rely on the implicit behavior, mark the appropriate
data or states as test points to ensure that they appear in the Signal Selector dialog box. For more
information, see Monitoring Test Points in Stateflow Charts in the Stateflow User's Guide.

Support for Buses in Data Store Memory
You can now use buses, but not arrays of buses, as shared data in Stateflow data store memory.

Enhanced Readability of State Functions
In R2011a, state functions are more readable due to improved inlining heuristics.

Support for Arrays of Buses as Inputs and Outputs of Charts and
Functions
In R2011a, you can pass arrays of buses as inputs and outputs of the following Stateflow objects:

• Charts
• MATLAB functions
• Simulink functions

24-7

https://www.mathworks.com/help/releases/R2012a/techdoc/ref/timeseriesclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.timeseries.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.tsarray.html
https://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsy2b2_.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-1024739.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Default Setting of 'States When Enabling' Chart Property Now Held
For new charts, the default setting of the States When Enabling chart property is Held. In previous
releases, the default setting was Inherit. For more information, see Controlling States When
Function-Call Inputs Reenable Charts in the Stateflow User's Guide.

Initial Value Vectors with Fixed-Point or Enumerated Values Now
Evaluate Correctly
In previous releases, if you set an initial value vector using fixed-point or enumerated values, all
elements of that vector would have the same value as the first element. For example:

For this initial value vector... The chart used these values...
[fi(1,1,16,0) fi(2,1,16,0)] [1 1], instead of [1 2]
[Colors.Red Colors.Yellow
Colors.Green]

[Colors.Red Colors.Red Colors.Red],
instead of [Colors.Red Colors.Yellow
Colors.Green]

In R2011a, this bug has been fixed.

Version History
If you have any models that rely on the behavior of initial value vectors from previous releases, these
models will behave differently in R2011a.

Mac Screen Menubar Disabled When Stateflow Is Installed
In R2011a, the Mac screen menubar is disabled when Stateflow is installed. This behavior enables
Stateflow Editor menu options to work normally on a Mac.

To enable the Mac screen menubar, modify the java.opts file by adding the following line:

-Dapple.laf.useScreenMenuBar=true

To prevent a slowdown in the MATLAB Editor, check that the java.opts file contains the following
line:

-Dapple.awt.graphics.UseQuartz=true

A java.opts file can reside in the folder from which you launch MATLAB or in the bin/maci64
subfolder within the MATLAB root folder. A java.opts file in the latter location applies to all users,
but individual users might not have permissions to modify a java.opts file there. If there is a
java.opts file in both locations with settings that conflict, the setting in the java.opts file in the
folder from which you launch MATLAB takes precedence. You might want to check both locations to
see whether you have existing java.opts files and then decide which one to modify.

• To create a new java.opts file or modify an existing copy in the folder from which you launch
MATLAB:

1 Quit MATLAB.
2 Relaunch MATLAB and immediately enter the following line in the Command Window:

R2011a

24-8

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsbaxkt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsbaxkt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

edit java.opts
• To create or modify a java.opts file that applies to all users, you can enter the following line in

the MATLAB Command Window at any time:

edit(fullfile(matlabroot,'bin','maci64','java.opts'))

24-9

R2010bSP2

Version: 7.6.2

Bug Fixes

25

R2010bSP1

Version: 7.6.1

Bug Fixes

26

R2010b

Version: 7.6

New Features

Bug Fixes

Version History

27

New Atomic Subcharts to Create Reusable States for Large-Scale
Modeling
In R2010b, you can use atomic subcharts to:

• Break up a chart into standalone parts to facilitate team development
• Reuse states across multiple charts and models
• Animate and debug multiple charts side-by-side during simulation
• Use simulation to test changes, one-by-one, without recompiling the entire chart
• Generate reusable code for specific states or subcharts to enhance unit testing

For more information, see Making States Reusable with Atomic Subcharts in the Stateflow User's
Guide.

Stateflow Library Charts Now Support Instances with Different Data
Sizes, Types, and Complexities
In R2010b, you can use library link charts that specify different data sizes, types, and complexities.
Previously, all library charts had to use the same settings for data size, type, and complexity. For more
information, see Creating Specialized Chart Libraries for Large-Scale Modeling in the Stateflow
User's Guide.

Support for Controlling Stateflow Diagnostics in the Configuration
Parameters Dialog Box
In R2010b, you can control the behavior of the following Stateflow diagnostics in the Diagnostics >
Stateflow pane of the Configuration Parameters dialog box:

• Unused data and events
• Unexpected backtracking
• Invalid input data access in chart initialization
• No unconditional default transitions
• Transition outside natural parent

For more information, see Diagnostics Pane: Stateflow in the Simulink Graphical User Interface.

Enhanced Custom-Code Parsing to Improve Reporting of Unresolved
Symbols
In R2010b, you can resolve symbols in your chart to symbols defined in custom code while parsing
the chart. This enhancement enables more accurate and earlier reporting of unresolved symbols.
Previously, the parser assumed that any unresolved chart symbols were defined in custom code. You
could not resolve chart symbols to symbols in your custom code until make time. If the chart symbols
were undefined in the custom code, a make error would appear.

Also, the Symbol Autocreation Wizard was previously available only for 32-bit Windows platforms that
use lcc for the mex compiler. In R2010b, the Symbol Autocreation Wizard is available to help you fix
unresolved symbols, regardless of the compiler or platform.

R2010b

27-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsbm40z-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f12-1025673.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bsiinya-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html

To enable or disable custom-code parsing, you can use the Parse custom code symbols check box
on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.

For more information, see:

• Parse custom code symbols in the Simulink Graphical User Interface
• Resolving Undefined Symbols in Your Chart in the Stateflow User's Guide

Temporal Logic Conditions Can Now Guard Transitions Originating
from Junctions
Previously, you could not use temporal logic conditions on transitions that originated from junctions.
Now you can use temporal logic conditions on transitions from junctions as long as the full transition
path connects two states. For more information, see Rules for Using Temporal Logic Operators and
Example of Detecting Elapsed Time in the Stateflow User's Guide.

Data Dialog Box Enhancements
In R2010b, the following changes to the Data properties dialog box apply:

Parameters Location in R2010a Location in R2010b Benefit of Location
Change

• Initial value
• Minimum
• Maximum

Value Attributes tab General tab Consistent with blocks
in the Simulink library
that specify these
parameters on the same
tab as the data type.

• Test point
• Watch in debugger

Value Attributes tab General tab Increases visibility of
commonly used
parameters.

• Save final value to
base workspace

• First index
• Units

Value Attributes tab Description tab Consolidates
parameters related to
the data description.

Branching of Function-Call Output Events No Longer Requires Binding
of Event to a State
Previously, using a Function-Call Split block to branch a function-call output event from a chart to
separate subsystems required binding of the event to a state. In R2010b, binding is no longer
required.

Passing Real Values to Function Inputs of Complex Type Disallowed
In R2010b, you cannot pass real values to function inputs of complex type. This restriction applies to
the following types of chart functions:

• Graphical functions

27-3

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bro3cs_-1.html#bsi2e_3-1
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f1-1026771.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-34084.html#brh25cj
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-34084.html#bsjbdzm
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/functioncallsplit.html

• Truth table functions
• Embedded MATLAB® functions
• Simulink functions

Version History
If you have existing models that pass real values to function inputs of complex type, an error now
appears when you try to simulate your model.

Using Chart Block That Accesses Global Data in For Each Subsystem
Disallowed
In R2010b, the following model configuration produces an error during Real-Time Workshop® code
generation:

• A Chart block resides in a For Each Subsystem.
• The Chart block tries to access global data from Data Store Memory blocks.

New and Enhanced Demos
The following demos have been added in R2010b:

Demo... Shows how you can...
sf_atomic_sensor_pair Model a redundant sensor pair using atomic

subcharts
sf_electrohydraulic Model a servo mechanism for use in

electrohydraulic systems

The following demo has been enhanced in R2010b:

Demo... Now...
sf_elevator Models an elevator system with two identical lifts

using atomic subcharts

R2010b

27-4

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html

R2010a

Version: 7.5

New Features

Bug Fixes

Version History

28

Support for Combining Actions in State Labels
You can now combine entry, during, and exit actions in a single line on state labels. This concise
syntax provides enhanced readability for your chart and helps eliminate redundant code. For more
information, see Combining State Actions to Eliminate Redundant Code in the Stateflow User's Guide.

New Diagnostic Detects Unused Data and Events
A new diagnostic now detects unused Stateflow data and events during simulation. A warning
message appears, alerting you to data and events that you can remove. This enhancement helps you
reduce the size of your model by removing objects that have no effect on simulation.

This diagnostic checks for usage of Stateflow data, except for the following types:

• Machine-parented data
• Inputs and outputs of Embedded MATLAB functions

This diagnostic checks for usage of Stateflow events, except for the following type:

• Input events

For more information, see Diagnostic for Detecting Unused Data and Diagnostic for Detecting
Unused Events in the Stateflow User's Guide.

Enhanced Support for Variable-Size Chart Inputs and Outputs
You can explicitly pass variable-size chart inputs and outputs as inputs and outputs of the following
functions:

• Embedded MATLAB functions
• Simulink functions
• Truth table functions that use Embedded MATLAB action language

For more information, see Using Variable-Size Data in Stateflow Charts in the Stateflow User's Guide.

Support for Chart-Level Data with Fixed-Point Word Lengths Up to 128
Bits
Chart-level data now support up to 128 bits of fixed-point precision for the following scopes:

• Input
• Output
• Parameter
• Data Store Memory

This increase in maximum precision from 32 to 128 bits provides these enhancements:

• Supports generating efficient code for targets with non-standard word sizes
• Allows charts to work with large fixed-point signals

R2010a

28-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsgq2jb-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-5433.html#bscnydh
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-7373.html#bscnyhv
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-7373.html#bscnyhv
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br_djiq.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

You can explicitly pass chart-level data with these fixed-point word lengths as inputs and outputs of
the following functions:

• Embedded MATLAB functions
• Simulink functions
• Truth table functions that use Embedded MATLAB action language

For more information, see Using Fixed-Point Data in Stateflow Charts in the Stateflow User's Guide.

New 'States When Enabling' Property for Charts with Function-Call
Input Events
The new chart property States When Enabling helps you specify how states behave when a
function-call input event reenables a chart. You can select one of the following settings in the Chart
properties dialog box:

• Held — Maintain most recent values of the states.
• Reset — Revert to the initial conditions of the states.
• Inherit — Inherit this setting from the parent subsystem.

This enhancement helps you more accurately control the behavior of a chart with a function-call input
event. For more information, see Controlling States When Function-Call Inputs Reenable Charts and
Setting Properties for a Single Chart in the Stateflow User's Guide.

Support for Tunable Structures of Parameter Scope in Charts
You can now define structures of parameter scope that are tunable. For more information, see
Defining Structures of Parameter Scope in the Stateflow User's Guide.

Enhanced Real-Time Workshop Code Generation for Noninlined State
Functions
If you prevent inlining for a state, Real-Time Workshop generated code contains a new static function
inner_default_statename when:

• Your chart contains a flow graph where an inner transition and default transition reach the same
junction inside a state.

• This flow graph is complex enough to exceed the inlining threshold.

For more information, see What Happens When You Prevent Inlining in the Stateflow User's Guide.

Enhanced Real-Time Workshop Code Generation for sizeof Function
When you use the sizeof function in generated code to determine vector or matrix dimensions,
sizeof always takes an input argument that evaluates to a data type.

28-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f10-32361.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsbaxkt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f12-1025321.html#f12-1026257
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bquvi77.html#bsf4n5i-1
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br2fvcq.html#br2hop5
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Behavior in Prior Releases Behavior in R2010a Benefits of Change in Code
Input argument references the
address of the variable, for
example:

sizeof(&a[0])

Input argument evaluates to the data
type of the variable, for example:

sizeof(uint8_T [256])

Ensures consistent results
between simulation and code
generation.

Enhanced Real-Time Workshop Code Generation for Custom-Code
Function Calls
When you use custom-code function calls in generated code, vector and matrix input arguments
always use pass-by-reference instead of pass-by-value behavior.

Behavior in Prior Releases Behavior in R2010a Benefits of Change in Code
Custom-code function calls might
use either pass-by-reference or
pass-by-value.

For pass-by-value, a memcpy
operation creates and stores a
temporary variable in the
generated code, for example:

int t[10];
for (i=0; i<10; i++) {
t[i] = y[i];
}
fcn(t);

Custom-code function calls use pass-by-
reference, for example:

fcn(&y[0]);

• Ensures consistent results
between simulation and code
generation.

• Less memory usage because
a temporary variable is not
necessary.

• Faster execution of
generated code because a
memcpy operation is not
necessary.

Data Change Implicit Event No Longer Supports Machine-Parented
Data
The implicit event change(data_name) no longer works for machine-parented data. In R2010a, this
implicit event works only with data at the chart level or lower in the hierarchy.

Version History
For machine-parented data, consider using change detection operators to determine when data
values change. For more information, see Detecting Changes in Data Values in the Stateflow User's
Guide.

Support for Machine-Parented Events Completely Removed
Support for machine-parented events has been completely removed. In R2010a, an error message
appears when you try to simulate models that contain events at the machine level.

R2010a

28-4

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bq4eoqt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Version History
To prevent undesired behavior for simulation and code generation, do not use machine-parented
events. For simulation, broadcasting an event to all charts in your model causes the following to
occur:

• Charts wake up without regard to data dependencies.
• Charts that are disabled might wake up.
• Charts that use function-call or edge-triggered events wake up.
• Charts unrelated to the event wake up.
• Infinite recursive cycles can occur because the chart that broadcasts the event wakes up.

For code generation, machine-parented events prevent code reuse for the entire model.

MEX Compilation with Microsoft Visual Studio .NET 2003 No Longer
Supported
Support for Microsoft Visual Studio® .NET 2003 as a MEX compiler for simulation has been removed
because MATLAB and Simulink no longer support this compiler. For information about alternative
compilers, see Choosing a Compiler in the Stateflow User's Guide.

Code Generation Status Messages No Longer Shown in Command
Window
For Windows platforms, messages about Stateflow or Embedded MATLAB code generation and
compilation status now appear only on the status bar of the Simulink Model Editor when you update
diagram. Previously, these messages also appeared in the MATLAB Command Window. This
enhancement minimizes distracting messages at the command prompt.

Change in Behavior for Appearance of Optimization Parameters
Previously, the Configuration Parameters dialog box showed the Stateflow section of the
Optimization pane only when both of the following conditions were true:

• Real-Time Workshop and Stateflow licenses were available.
• Your model included Stateflow charts or Embedded MATLAB Function blocks.

In R2010a, the Configuration Parameters dialog box shows the Stateflow section of the Optimization
pane when both licenses are available. Your model need not include any Stateflow charts or
Embedded MATLAB Function blocks.

For a list of optimization parameters, see Optimization Pane: General in the Simulink Graphical User
Interface.

Enhanced Inlining of Generated Code That Calls Subfunctions
In R2010a, Real-Time Workshop Embedded Coder software inlines generated code for Stateflow
charts, even if the generated code calls a subfunction that accesses global Simulink data. This
optimization uses less RAM and ROM.

28-5

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brgsh9t.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cqu2-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html

Check Box for 'Treat as atomic unit' Now Always Selected
In existing models, simulation and code generation of Stateflow charts and Truth Table blocks always
behave as if the Treat as atomic unit check box in the Subsystem Parameters dialog box is selected.
Starting in R2010a, this check box is always selected for consistency with existing behavior.

R2010a

28-6

R2009bSP1

Version: 7.4.1

Bug Fixes

29

R2009b

Version: 7.4

New Features

Bug Fixes

Version History

30

Ability to Copy Simulink Function-Call Subsystems and Paste in
Stateflow Editor as Simulink Functions, and Vice Versa
You can copy a function-call subsystem from a model and paste directly in the Stateflow Editor. This
enhancement eliminates the steps of manually creating a Simulink function in your chart and pasting
the contents of the subsystem into the new function. You can also copy a Simulink function from a
chart and paste directly in a model as a function-call subsystem.

For more information, see Using Simulink Functions in Stateflow Charts in the Stateflow User's
Guide.

Ability to Generate Switch-Case Statements for Flow Graphs and
Embedded MATLAB Functions Using Real-Time Workshop Embedded
Coder Software
If a flow graph or Embedded MATLAB function in your chart uses if-elseif-else decision logic,
you can choose to generate switch-case statements during Real-Time Workshop Embedded Coder
code generation. Switch-case statements provide more readable and efficient code than if-
elseif-else statements when multiple decision branches are possible.

When you load models created in R2009a and earlier, this optimization is off to maintain backward
compatibility. In previous versions, if-elseif-else logic appeared unchanged in generated code.

For more information, see:

• Enhancing Readability of Generated Code for Flow Graphs
• Enhancing Readability of Generated Code for MATLAB Functions
• Code Generation Pane: Code Style

Support for Creating Switch-Case Flow Graphs Using the Pattern
Wizard
In the Pattern Wizard, you can now choose to create a flow graph with switch-case decision logic.
For more information, see Modeling Logic Patterns and Iterative Loops Using Flow Graphs in the
Stateflow User's Guide.

Support for Using More Than 254 Events in a Chart
You can now use more than 254 events in a chart. The previous limit of 254 events no longer applies.
This enhancement supports large-scale models with charts that send and receive hundreds of events
during simulation. Although Stateflow software does not limit the number of events, the underlying C
compiler enforces a theoretical limit of (2^31)-1 events for the generated code.

For more information, see Defining Events in the Stateflow User's Guide.

R2009b

30-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brmtjej-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br7n7r2.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br74cs9.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g1r.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brrl_o7.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-6010.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Improved Panning and Selection of States and Transitions When Using
Stateflow Debugger
During single-step mode, the Stateflow Debugger no longer zooms automatically to the chart object
that is executing. Instead, the debugger opens the subviewer that contains that object. This
enhancement minimizes visual disruptions as you step through your analysis of a simulation.

For more information, see Options to Control Execution Rate in the Debugger in the Stateflow User's
Guide.

Stateflow Compilation Status Added to Progress Indicator on Simulink
Status Bar
For Windows platforms, messages about Stateflow compilation status now appear on the status bar of
the Simulink Model Editor when you update diagram.

Support for Chart Inputs and Outputs That Vary in Dimension During
Simulation
Charts now support input and output data that vary in dimension during simulation. In this release,
only Embedded MATLAB functions nested in the charts can manipulate these input and output data.

For more information, see Using Variable-Size Data in Stateflow Charts and Working with Variable-
Size Data in MATLAB Functions in the Stateflow User's Guide.

New Compilation Report for Embedded MATLAB Functions in Stateflow
Charts
The new compilation report provides compile-time type information for the variables and expressions
in your Embedded MATLAB functions. This information helps you find the sources of error messages
and understand type propagation issues, particularly for fixed-point data types. For more information,
see Working with MATLAB Function Reports in the Simulink User's Guide.

Version History
The new compilation report is not supported by the MATLAB internal browser on Sun™ Solaris™ 64-
bit platforms. To view the compilation report on Sun Solaris 64-bit platforms, you must have your
MATLAB Web preferences configured to use an external browser, for example, Mozilla® Firefox®. To
learn how to configure your MATLAB Web preferences, see Web Preferences.

Enhanced Support for Replacing Math Functions with Target-Specific
Implementations
You can now replace the following math functions with target-specific implementations:

Function Data Type Support
atan2 Floating-point

30-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#f5-1020879
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br_djiq.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br_it3g.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br_it3g.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br770af-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
https://www.mathworks.com/help/releases/R2012a/techdoc/matlab_env/bq37czj-1.html#bs1vaau-28

Function Data Type Support
fmod Floating-point
ldexp Floating-point
max Floating-point and integer
min Floating-point and integer

Replacement of abs now works for both floating-point and integer arguments. Previously,
replacement of abs with a target function worked only for floating-point arguments.

For more information about Target Function Libraries, see:

• Replacement of C Math Library Functions with Target-Specific Implementations
• Replacing Operators with Target-Specific Implementations

Enhanced Context Menu Support for Adding Flow Graph Patterns to
Charts
In a chart, you can now right-click at any level of the hierarchy (for example, states and subcharts) to
insert flow graphs using the Patterns context menu. Previously, options in this context menu were
available only if you right-clicked at the chart level.

Option to Log Chart Signals Available in the Stateflow Editor
To log chart signals, you can select Tools > Log Chart Signals in the Stateflow Editor. Previously,
you had to right-click the Stateflow block in the Model Editor to open the Signal Logging dialog box.

For more information, see What You Can Log During Chart Simulation in the Stateflow User's Guide.

Default Precision Set to Double for Calls to C Math Functions
When you call C math functions, such as sin, exp, or pow, double precision applies unless the first
input argument is explicitly single precision. For example, if you call the sin function with an integer
argument, a cast of the input argument to a floating-point number of type double replaces the
original argument. This behavior ensures consistent results between Simulink blocks and Stateflow
charts for calls to C math functions.

To force a call to a single-precision version of a C math function, you must explicitly cast the function
argument using the single cast operator. This method works only when a single-precision version of
the function exists in the selected Target Function Library as it would in the 'C99 (ISO)' Target
Function Library. For more information, see Calling C Functions in Actions and Type Cast Operations
in the Stateflow User's Guide.

Change in Text and Visibility of Parameter Prompt for Easier Use with
Fixed-Point Advisor and Fixed-Point Tool
In the Data properties dialog box, the Lock output scaling against changes by the autoscaling
tool check box is now Lock data type setting against changes by the fixed-point tools.
Previously, this check box was visible only if you entered an expression or a fixed-point data type,
such as fixdt(1,16,0). This check box is now visible for any data type specification. This

R2009b

30-4

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-65269.html#brde8y9
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-57618.html#brdjwsc
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bsy2b2_.html#f5-1024774
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-65269.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-57618.html#f0-61218
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

enhancement enables you to lock the current data type settings on the dialog box against changes
that the Fixed-Point Advisor or Fixed-Point Tool chooses.

For more information, see Fixed-Point Data Properties and Automatic Scaling of Stateflow Fixed-Point
Data in the Stateflow User's Guide.

Charts Closed By Default When Opening Models Saved in Formats of
Earlier Versions
If you save a model with Stateflow charts in the format of an earlier version, the charts appear closed
when you open the new MDL-file.

30-5

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-32810.html#bqlgsp6-12
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f10-133349.html#f10-135401
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f10-133349.html#f10-135401
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

R2009a

Version: 7.3

New Features

Bug Fixes

Version History

31

Support for Saving the Complete Simulation State at a Specific Time
You can save the complete simulation state at a specific time and then load that state for further
simulation. This enhancement provides these benefits:

• Enables running isolated segments of a simulation without starting from time t = 0, which saves
time

• Enables testing of the same chart configuration with different settings
• Enables testing of hard-to-reach chart configurations by loading a specific simulation state

For more information, see Saving and Restoring Simulations with SimState in the Stateflow User's
Guide.

Enhanced Support for Enumerated Data Types
In R2009a, you can use enumerated data in Embedded MATLAB functions, truth table functions that
use Embedded MATLAB action language, and Truth Table blocks. See Using Enumerated Data in
Stateflow Charts in the Stateflow User's Guide.

New Boolean Keywords in Stateflow Action Language
You can now use true and false as Boolean keywords in Stateflow action language. For more
information, see Supported Symbols in Actions in the Stateflow User's Guide.

Enhanced Control of Inlining State Functions in Generated Code
In R2009a, a new Function Inline Option parameter is available in the State properties dialog box.
This parameter enables better control of inlining state functions in generated code, which provides
these benefits:

• Prevents small changes to a model from causing major changes to the structure of generated code
• Enables easier manual inspection of generated code, because of a one-to-one mapping between

the code and the model

For more information, see Controlling Inlining of State Functions in Generated Code in the Stateflow
User's Guide.

New Diagnostic to Detect Unintended Backtracking Behavior in Flow
Graphs
A new diagnostic detects unintended backtracking behavior in flow graphs during simulation. A
warning message appears, with suggestions on how to fix the flow graph to prevent unintended
backtracking. For more information, see Best Practices for Creating Flow Graphs in the Stateflow
User's Guide.

Use of Basic Linear Algebra Subprograms (BLAS) Libraries for Speed
Embedded MATLAB functions in Stateflow charts can now use BLAS libraries to speed up low-level
matrix operations during simulation. For more information, see Simulation Target Pane: General.

R2009a

31-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brnc99g-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brp7mn3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brp7mn3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-127869.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/br2fvcq.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brsw76m-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bro1rea-1.html

Enhanced Support for Replacing C Math Functions with Target-Specific
Implementations
You can now replace the pow function with a target-specific implementation. For more information
about Target Function Libraries, see:

• Replacement of C Math Library Functions with Target-Specific Implementations
• Replacing Operators with Target-Specific Implementations

Smart Transitions Now Prefer Straight Lines
In R2009a, the graphical behavior of smart transitions has been enhanced as follows:

• Smart transitions maintain straight lines between states and junctions whenever possible.
Previously, smart transitions would preserve curved lines.

• When you drag a smart transition radially around a junction, the end on the junction follows the
tip to maintain a straight line by default. Previously, the end on the junction would maintain its
original location and not follow the tip of the transition.

For more information, see What Smart Transitions Do in the Stateflow User's Guide.

Clicking Up-Arrow Button in the Stateflow Editor Closes Top-Level
Chart
When a top-level chart appears in the Stateflow Editor, clicking the up-arrow button in the toolbar
causes the chart to close and the Simulink model that contains the chart to appear. This behavior is
consistent with clicking the up-arrow button in the toolbar of a Simulink subsystem window.

Previously, clicking the up-arrow button for a top-level chart would cause the Simulink model to
appear, but the chart would not close. For more information, see Navigating Subcharts in the
Stateflow User's Guide.

Enhanced Type Resolution for Symbols
In R2009a, type resolution for Stateflow data has been enhanced to support any MATLAB expression
that evaluates to a type.

Enhanced Code Generation for Stateflow Events
In R2009a, the generated code for managing Stateflow events uses a deterministic numbering
method. This enhancement minimizes unnecessary differences in the generated code for charts
between R2009a and any future release.

Enhanced Real-Time Workshop Generated Code for Charts with
Simulink Functions
In R2009a, Real-Time Workshop generated code for charts with Simulink functions no longer uses
unneeded global variables for the function inputs and outputs. The interface can be represented by

31-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-65269.html#brde8y9
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-57618.html#brdjwsc
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f9-59778.html#f9-59413
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f9-57961.html#f9-58059
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

local temporary variables or completely eliminated by optimizations, such as expression folding. This
enhancement provides reduced RAM consumption and faster execution time.

Use of en, du, ex, entry, during, and exit for Data and Event Names
Being Disallowed in a Future Version
In a future version of Stateflow software, use of en, du, ex, entry, during, or exit for naming data
or events will be disallowed. In R2009a, a warning message appears when you run a model that
contains any of these keywords as the names of data or events.

Version History
To avoid warning messages, rename any data or event that uses en, du, ex, entry, during, or exit
as an identifier.

Support for Machine-Parented Events Being Removed in a Future
Version
In a future version of Stateflow software, support for machine-parented events will be removed. In
R2009a, a warning message appears when you simulate models that contain events at the machine
level.

Version History
To prevent undesired behavior for simulation and code generation, do not use machine-parented
events. For simulation, broadcasting an event to all charts in your model causes the following to
occur:

• Charts wake up without regard to data dependencies.
• Charts that are disabled might wake up.
• Charts that use function-call or edge-triggered events wake up.
• Charts unrelated to the event wake up.
• Infinite recursive cycles can occur because the chart that broadcasts the event wakes up.

For code generation, machine-parented events prevent code reuse for the entire model.

R2009a

31-4

R2008b

Version: 7.2

New Features

Bug Fixes

Version History

32

Support for Embedding Simulink Function-Call Subsystems in a
Stateflow Chart
You can use a Simulink function to embed a function-call subsystem in a Stateflow chart. You fill this
function with Simulink blocks and call it in state actions and on transitions. Like graphical functions,
truth table functions, and Embedded MATLAB functions, you can use multiple return values with
Simulink functions.

For more information, see Using Simulink Functions in Stateflow Charts in the Stateflow User's
Guide.

Support for Using Enumerated Data Types in a Stateflow Chart
You can use data of an enumerated type in a Stateflow chart.

For more information, see Using Enumerated Data in Stateflow Charts in the Stateflow User's Guide
and Enumerations and Modeling in the Simulink User's Guide.

New Alignment, Distribution, and Resizing Commands for Stateflow
Charts
You can use alignment, distribution, and resizing commands on graphical chart objects, such as
states, functions, and boxes.

For more information, see Formatting Chart Objects in the Stateflow User's Guide.

Unified Simulation and Embeddable Code Generation Options for
Stateflow Charts and Truth Table Blocks
You can use a single dialog box to specify simulation and embeddable code generation options that
apply to Stateflow charts and Truth Table blocks. These changes apply:

Type of Model Simulation Options Embeddable Code Generation Options
Nonlibrary Migrated from the Simulation Target dialog

box to the Configuration Parameters dialog
box

Enhanced with new options in the Real-Time
Workshop pane of the Configuration
Parameters dialog box

Library Migrated from the Simulation Target dialog
box to the Configuration Parameters dialog
box

Migrated from the RTW Target dialog box to
the Configuration Parameters dialog box

GUI Changes in Simulation Options for Nonlibrary Models

The following sections describe changes in the panes of the Simulation Target dialog box for
nonlibrary models.

R2008b

32-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brmtjej-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brp7mn3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f4-59263.html#brq27i5
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Changes for the General Pane of the Simulation Target Dialog Box

Release Appearance
Previous General pane of the Simulation Target dialog box

New Simulation Target pane of the Configuration Parameters dialog box

32-3

Changes for the Custom Code Pane of the Simulation Target Dialog Box

Release Appearance
Previous Custom Code pane of the Simulation Target dialog box

New Simulation Target > Symbols pane of the Configuration Parameters dialog box

R2008b

32-4

Release Appearance
New Simulation Target > Custom Code pane of the Configuration Parameters dialog box

Changes for the Description Pane of the Simulation Target Dialog Box

In previous releases, the Description pane of the Simulation Target dialog box appeared as follows.

In R2008b, these options are no longer available. For older models where the Description pane
contained information, the text is now accessible only in the Model Explorer. When you select
Simulink Root > Configuration Preferences in the Model Hierarchy pane, the text appears in
the Description field for that model.

32-5

Nonlibrary Models: Mapping of GUI Options from the Simulation Target Dialog Box to the
Configuration Parameters Dialog Box

For nonlibrary models, the following table maps each GUI option in the Simulation Target dialog box
to the equivalent in the Configuration Parameters dialog box. The options are listed in order of
appearance in the Simulation Target dialog box.

Old Option in the Simulation
Target Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

General > Enable debugging /
animation

Simulation Target > Enable
debugging / animation

on

General > Enable overflow
detection (with debugging)

Simulation Target > Enable
overflow detection (with
debugging)

on

General > Echo expressions
without semicolons

Simulation Target > Echo
expressions without semicolons

on

General > Build Actions Simulation Target > Simulation
target build mode

Incremental build

None Simulation Target > Custom
Code > Source file

''

Custom Code > Include Code Simulation Target > Custom
Code > Header file

''

Custom Code > Include Paths Simulation Target > Custom
Code > Include directories

''

Custom Code > Source Files Simulation Target > Custom
Code > Source files

''

Custom Code > Libraries Simulation Target > Custom
Code > Libraries

''

Custom Code > Initialization
Code

Simulation Target > Custom
Code > Initialize function

''

Custom Code > Termination
Code

Simulation Target > Custom
Code > Terminate function

''

Custom Code > Reserved Names Simulation Target > Symbols >
Reserved names

{}

Custom Code > Use these
custom code settings for all
libraries

None Not applicable

R2008b

32-6

Old Option in the Simulation
Target Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

Description > Description None

Note If you load an older model
that contained user-specified text in
the Description field, that text now
appears in the Model Explorer.
When you select Simulink Root >
Configuration Preferences in the
Model Hierarchy pane, the text
appears in the Description field for
that model.

Not applicable

Description > Document Link None Not applicable

Note For nonlibrary models, Simulation Target options in the Configuration Parameters dialog box
are also available in the Model Explorer. When you select Simulink Root > Configuration
Preferences in the Model Hierarchy pane, you can select Simulation Target in the Contents
pane to access the options.

GUI Changes in Simulation Options for Library Models

The following sections describe changes in the panes of the Simulation Target dialog box for library
models.

Changes for the General Pane of the Simulation Target Dialog Box

In previous releases, the General pane of the Simulation Target dialog box for library models
appeared as follows.

32-7

In R2008b, these options are no longer available. All library models inherit these option settings from
the main model to which the libraries are linked.

Changes for the Custom Code Pane of the Simulation Target Dialog Box

Release Appearance
Previous Custom Code pane of the Simulation Target dialog box

R2008b

32-8

Release Appearance
New Simulation Target pane of the Configuration Parameters dialog box

Changes for the Description Pane of the Simulation Target Dialog Box

In previous releases, the Description pane of the Simulation Target dialog box appeared as follows.

In R2008b, these options are no longer available. For older models where the Description pane
contained information, the text is discarded.

32-9

Library Models: Mapping of GUI Options from the Simulation Target Dialog Box to the Configuration
Parameters Dialog Box

For library models, the following table maps each GUI option in the Simulation Target dialog box to
the equivalent in the Configuration Parameters dialog box. The options are listed in order of
appearance in the Simulation Target dialog box.

Old Option in the Simulation
Target Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

General > Enable debugging /
animation

None Not applicable

General > Enable overflow
detection (with debugging)

None Not applicable

General > Echo expressions
without semicolons

None Not applicable

General > Build Actions None Not applicable
None Simulation Target > Source file ''
Custom Code > Include Code Simulation Target > Header file ''
Custom Code > Include Paths Simulation Target > Include

directories
''

Custom Code > Source Files Simulation Target > Source files ''
Custom Code > Libraries Simulation Target > Libraries ''
Custom Code > Initialization
Code

Simulation Target > Initialize
function

''

Custom Code > Termination
Code

Simulation Target > Terminate
function

''

Custom Code > Reserved Names None Not applicable
Custom Code > Use local custom
code settings (do not inherit
from main model)

Simulation Target > Use local
custom code settings (do not
inherit from main model)

off

Description > Description None Not applicable
Description > Document Link None Not applicable

Note For library models, Simulation Target options in the Configuration Parameters dialog box are
not available in the Model Explorer.

GUI Enhancements in Real-Time Workshop Code Generation Options for Nonlibrary Models

The following sections describe enhancements to the Real-Time Workshop pane of the
Configuration Parameters dialog box for nonlibrary models.

Enhancement for the Real-Time Workshop: Symbols Pane of the Configuration Parameters Dialog Box

In previous releases, the Real-Time Workshop > Symbols pane of the Configuration Parameters
dialog box appeared as follows.

R2008b

32-10

In R2008b, a new option is available in this pane: Reserved names. You can use this option to
specify a set of keywords that the Real-Time Workshop build process should not use. This action
prevents naming conflicts between functions and variables from external environments and
identifiers in the generated code.

You can also choose to use the reserved names specified in the Simulation Target > Symbols pane
to avoid entering the same information twice for the nonlibrary model. Select the Use the same
reserved names as Simulation Target check box.

Enhancement for the Real-Time Workshop: Custom Code Pane of the Configuration Parameters Dialog
Box

In previous releases, the Real-Time Workshop > Custom Code pane of the Configuration
Parameters dialog box appeared as follows.

32-11

In R2008b, a new option is available in this pane: Use the same custom code settings as
Simulation Target. You can use this option to copy the custom code settings from the Simulation
Target > Custom Code pane to avoid entering the same information twice for the nonlibrary model.

GUI Changes in Real-Time Workshop Code Generation Options for Library Models

The following sections describe changes in the panes of the RTW Target dialog box for library models.

Changes for the General Pane of the RTW Target Dialog Box

In previous releases, the General pane of the RTW Target dialog box for library models appeared as
follows.

R2008b

32-12

In R2008b, these options are no longer available. During Real-Time Workshop code generation,
options specified for the main model are used.

32-13

Changes for the Custom Code Pane of the RTW Target Dialog Box

Release Appearance
Previous Custom Code pane of the RTW Target dialog box

New Real-Time Workshop pane of the Configuration Parameters dialog box

Changes for the Description Pane of the RTW Target Dialog Box

In previous releases, the Description pane of the RTW Target dialog box appeared as follows.

R2008b

32-14

In R2008b, these options are no longer available. For older models where the Description pane
contained information, the text is discarded.

Library Models: Mapping of GUI Options from the RTW Target Dialog Box to the Configuration
Parameters Dialog Box

For library models, the following table maps each GUI option in the RTW Target dialog box to the
equivalent in the Configuration Parameters dialog box. The options are listed in order of appearance
in the RTW Target dialog box.

Old Option in the RTW Target
Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

General > Comments in
generated code

None Not applicable

General > Use bitsets for storing
state configuration

None Not applicable

General > Use bitsets for storing
boolean data

None Not applicable

32-15

Old Option in the RTW Target
Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

General > Compact nested if-
else using logical AND/OR
operators

None Not applicable

General > Recognize if-elseif-
else in nested if-else statements

None Not applicable

General > Replace constant
expressions by a single constant

None Not applicable

General > Minimize array reads
using temporary variables

None Not applicable

General > Preserve symbol
names

None Not applicable

General > Append symbol names
with parent names

None Not applicable

General > Use chart names with
no mangling

None Not applicable

General > Build Actions None Not applicable
None Real-Time Workshop > Source

file
''

Custom Code > Include Code Real-Time Workshop > Header
file

''

Custom Code > Include Paths Real-Time Workshop > Include
directories

''

Custom Code > Source Files Real-Time Workshop > Source
files

''

Custom Code > Libraries Real-Time Workshop > Libraries ''
Custom Code > Initialization
Code

Real-Time Workshop > Initialize
function

''

Custom Code > Termination
Code

Real-Time Workshop >
Terminate function

''

Custom Code > Reserved Names None Not applicable
Custom Code > Use local custom
code settings (do not inherit
from main model)

Real-Time Workshop > Use local
custom code settings (do not
inherit from main model)

off

None Real-Time Workshop > Use the
same custom code settings as
Simulation Target

off

Description > Description None Not applicable
Description > Document Link None Not applicable

Note For library models, Real-Time Workshop options in the Configuration Parameters dialog box
are not available in the Model Explorer.

R2008b

32-16

Mapping of Target Object Properties to Parameters in the Configuration Parameters Dialog
Box

Previously, you could programmatically set options for simulation and embeddable code generation by
accessing the API properties of Target objects sfun and rtw, respectively. In R2008b, the API
properties of Target objects sfun and rtw are replaced by parameters that you configure using the
commands get_param and set_param.

Mapping of Object Properties to Simulation Parameters for Nonlibrary Models

The following table maps API properties of the Target object sfun for nonlibrary models to the
equivalent parameters in R2008b. Object properties are listed in alphabetical order; those not listed
in the table do not have equivalent parameters in R2008b.

Old sfun Object Property Old Option in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option in the
Configuration
Parameters Dialog
Box

CodeFlagsInfo
('debug')

General > Enable
debugging /
animation

SFSimEnableDebug

string - off, on

Simulation Target
> Enable
debugging /
animation

CodeFlagsInfo
('overflow')

General > Enable
overflow
detection (with
debugging)

SFSimOverflowDetection

string - off, on

Simulation Target
> Enable overflow
detection (with
debugging)

CodeFlagsInfo
('echo')

General > Echo
expressions
without
semicolons

SFSimEcho

string - off, on

Simulation Target
> Echo expressions
without semicolons

CustomCode Custom Code >
Include Code

SimCustomHeaderCode

string - ''

Simulation Target
> Custom Code >
Header file

CustomInitializer Custom Code >
Initialization
Code

SimCustomInitializer

string - ''

Simulation Target
> Custom Code >
Initialize function

CustomTerminator Custom Code >
Termination
Code

SimCustomTerminator

string - ''

Simulation Target
> Custom Code >
Terminate function

ReservedNames Custom Code >
Reserved Names

SimReservedNameArray

string array - {}

Simulation Target
> Symbols >
Reserved names

UserIncludeDirs Custom Code >
Include Paths

SimUserIncludeDirs

string - ''

Simulation Target
> Custom Code >
Include directories

UserLibraries Custom Code >
Libraries

SimUserLibraries

string - ''

Simulation Target
> Custom Code >
Libraries

32-17

Old sfun Object Property Old Option in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option in the
Configuration
Parameters Dialog
Box

UserSources Custom Code >
Source Files

SimUserSources

string - ''

Simulation Target
> Custom Code >
Source files

Mapping of Object Properties to Simulation Parameters for Library Models

The following table maps API properties of the Target object sfun for library models to the
equivalent parameters in R2008b. Object properties are listed in alphabetical order; those not listed
in the table do not have equivalent parameters in R2008b.

Old sfun Object Property Old Option in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option in the
Configuration
Parameters Dialog
Box

CustomCode Custom Code >
Include Code

SimCustomHeaderCode

string - ''

Simulation Target
> Header file

CustomInitializer Custom Code >
Initialization
Code

SimCustomInitializer

string - ''

Simulation Target
> Initialize
function

CustomTerminator Custom Code >
Termination
Code

SimCustomTerminator

string - ''

Simulation Target
> Terminate
function

UseLocalCustomCodeSettings Custom Code >
Use local custom
code settings (do
not inherit from
main model)

SimUseLocalCustomCode

string - off, on

Simulation Target
> Use local custom
code settings (do
not inherit from
main model)

UserIncludeDirs Custom Code >
Include Paths

SimUserIncludeDirs

string - ''

Simulation Target
> Include
directories

UserLibraries Custom Code >
Libraries

SimUserLibraries

string - ''

Simulation Target
> Libraries

UserSources Custom Code >
Source Files

SimUserSources

string - ''

Simulation Target
> Source files

Mapping of Object Properties to Code Generation Parameters for Library Models

The following table maps API properties of the Target object rtw for library models to the equivalent
parameters in R2008b. Object properties are listed in alphabetical order; those not listed in the table
do not have equivalent parameters in R2008b.

R2008b

32-18

Old rtw Object Property Old Option in the
RTW Target
Dialog Box

New Configuration
Parameter

New Option in the
Configuration
Parameters Dialog
Box

CustomCode Custom Code >
Include Code

CustomHeaderCode

string - ''

Real-Time
Workshop >
Header file

CustomInitializer Custom Code >
Initialization
Code

CustomInitializer

string - ''

Real-Time
Workshop >
Initialize function

CustomTerminator Custom Code >
Termination
Code

CustomTerminator

string - ''

Real-Time
Workshop >
Terminate function

UseLocalCustomCodeSettings Custom Code >
Use local custom
code settings (do
not inherit from
main model)

RTWUseLocalCustomCode

string - off, on

Real-Time
Workshop > Use
local custom code
settings (do not
inherit from main
model)

UserIncludeDirs Custom Code >
Include Paths

CustomInclude

string - ''

Real-Time
Workshop >
Include directories

UserLibraries Custom Code >
Libraries

CustomLibrary

string - ''

Real-Time
Workshop >
Libraries

UserSources Custom Code >
Source Files

CustomSource

string - ''

Real-Time
Workshop >
Source files

New Parameters in the Configuration Parameters Dialog Box for Simulation and
Embeddable Code Generation

In R2008b, new parameters are added to the Configuration Parameters dialog box for simulation and
embeddable code generation.

New Simulation Parameters for Nonlibrary Models

The following table lists the new simulation parameters that apply to nonlibrary models.

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

SimBuildMode

string – sf_incremental_build,
sf_nonincremental_build,
sf_make, sf_make_clean,
sf_make_clean_objects

Simulation Target > Simulation
target build mode

Specifies how you build the
simulation target for a model.

32-19

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

SimCustomSourceCode

string - ''

Simulation Target > Custom
Code > Source file

Enter code lines to appear near the
top of a generated source code file.

New Simulation Parameter for Library Models

The following table lists the new simulation parameter that applies to library models.

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

SimCustomSourceCode

string - ''

Simulation Target > Source file Enter code lines to appear near the
top of a generated source code file.

New Code Generation Parameters for Nonlibrary Models

The following table lists the new code generation parameters that apply to nonlibrary models.

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

ReservedNameArray

string array - {}

Real-Time Workshop > Symbols
> Reserved names

Enter the names of variables or
functions in the generated code that
match the names of variables or
functions specified in custom code.

RTWUseSimCustomCode

string – off, on

Real-Time Workshop > Custom
Code > Use the same custom
code settings as Simulation
Target

Specify whether to use the same
custom code settings as those
specified for simulation.

UseSimReservedNames

string – off, on

Real-Time Workshop > Symbols
> Use the same reserved names
as Simulation Target

Specify whether to use the same
reserved names as those specified
for simulation.

New Code Generation Parameters for Library Models

The following table lists the new code generation parameters that apply to library models.

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

CustomSourceCode

string – ''

Real-Time Workshop > Source
file

Enter code lines to appear near the
top of a generated source code file.

RTWUseSimCustomCode

string – off, on

Real-Time Workshop > Use the
same custom code settings as
Simulation Target

Specify whether to use the same
custom code settings as those
specified for simulation.

Version History
Updating Scripts That Set Options Programmatically for Simulation and Embeddable Code
Generation

R2008b

32-20

In previous releases, you could use the Stateflow API to set options for simulation and embeddable
code generation by accessing the Target object (sfun or rtw) in a Stateflow machine. For example,
you could set simulation options programmatically by running these commands in a MATLAB script:

r = slroot;
machine = r.find('-isa','Stateflow.Machine','Name','main_mdl');
t_sim = machine.find('-isa','Stateflow.Target','Name','sfun');
t_sim.setCodeFlag('debug',1);
t_sim.setCodeFlag('overflow',1);
t_sim.setCodeFlag('echo',1);
t_sim.getCodeFlag('debug');
t_sim.getCodeFlag('overflow');
t_sim.getCodeFlag('echo');

In R2008b, you must update your scripts to use the set_param and get_param commands to
configure simulation and embeddable code generation. For example, you can update the previous
script as follows:

cs = getActiveConfigSet(gcs);
set_param(cs,'SFSimEnableDebug','on');
set_param(cs,'SFSimOverflowDetection','on');
set_param(cs,'SFSimEcho','on');
get_param(cs,'SFSimEnableDebug');
get_param(cs,'SFSimOverflowDetection');
get_param(cs,'SFSimEcho');

For information about... See...
Object properties and their equivalent parameters in
R2008b

Properties of Target objects sfun and rtw that are no
longer supported in R2008b cannot be updated using
the command-line API.

Using the set_param and get_param commands Using Command-Line API to Set Simulation and Code
Generation Parameters.

Accessing Target Options for Library Models

In previous releases, you could access target options for library models via the Tools menu in the
Stateflow Editor or the Contents pane of the Model Explorer. In R2008b, you must use the Tools
menu to access target options for library models. For example, to specify parameters for the
simulation target, select Tools > Open Simulation Target in the Stateflow Editor.

What Happens When You Load an Older Model in R2008b

When you use R2008b to load a model created in an earlier version, dialog box options and the
equivalent object properties for simulation and embeddable code generation targets migrate
automatically to the Configuration Parameters dialog box, except in the cases that follow.

For the simulation target of a nonlibrary model, these options and properties do not migrate to the
Configuration Parameters dialog box. The information is discarded when you load the model, unless
otherwise noted.

32-21

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brqsb44.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brqsb44.html

Option in the Simulation Target Dialog Box of a
Nonlibrary Model

Equivalent Object Property

Custom Code > Use these custom code settings
for all libraries

ApplyToAllLibs

Description > Description Description

Note If you load an older model that contains user-
specified text in the Description field, that text now
appears in the Model Explorer. When you select
Simulink Root > Configuration Preferences in the
Model Hierarchy pane, the text appears in the
Description field for that model.

Description > Document Link Document

For the simulation target of a library model, these options and properties do not migrate to the
Configuration Parameters dialog box. The information is discarded when you load the model.

Option in the Simulation Target Dialog Box of a
Library Model

Equivalent Object Property

General > Enable debugging / animation CodeFlagsInfo('debug')
General > Enable overflow detection (with
debugging)

CodeFlagsInfo('overflow')

General > Echo expressions without semicolons CodeFlagsInfo('echo')
General > Build Actions None
Custom Code > Reserved Names ReservedNames
Description > Description Description
Description > Document Link Document

For the embeddable code generation target of a library model, these options and properties do not
migrate to the Configuration Parameters dialog box. The information is discarded when you load the
model.

Option in the RTW Target Dialog Box of a Library
Model

Equivalent Object Property

General > Comments in generated code CodeFlagsInfo('comments')
General > Use bitsets for storing state
configuration

CodeFlagsInfo('statebitsets')

General > Use bitsets for storing boolean data CodeFlagsInfo('databitsets')
General > Compact nested if-else using logical
AND/OR operators

CodeFlagsInfo('emitlogicalops')

General > Recognize if-elseif-else in nested if-else
statements

CodeFlagsInfo('elseifdetection')

General > Replace constant expressions by a
single constant

CodeFlagsInfo('constantfolding')

R2008b

32-22

Option in the RTW Target Dialog Box of a Library
Model

Equivalent Object Property

General > Minimize array reads using temporary
variables

CodeFlagsInfo('redundantloadelimination')

General > Preserve symbol names CodeFlagsInfo('preservenames')
General > Append symbol names with parent
names

CodeFlagsInfo('preservenameswithparent')

General > Use chart names with no mangling CodeFlagsInfo('exportcharts')
General > Build Actions None
Custom Code > Reserved Names ReservedNames
Description > Description Description
Description > Document Link Document

What Happens When You Save an Older Model in R2008b

When you use R2008b to save a model created in an earlier version, parameters for simulation and
embeddable code generation from the Configuration Parameters dialog box are saved. However,
properties of API Target objects sfun and rtw are not saved if those properties do not have an
equivalent parameter in the Configuration Parameters dialog box. Properties that do not migrate to
the Configuration Parameters dialog box are discarded when you load the model. Therefore, old
Target object properties are not saved even if you choose to save the model as an older version (for
example, R2007a).

Workaround for Library Models If They No Longer Use Local Custom Code Settings

Behavior in R2008a and Earlier Releases

In R2008a and earlier releases, the main model simulation target had a custom code option Use
these custom code settings for all libraries, or the target property ApplyToAllLibs. The library
model simulation target had a similar custom code option Use local custom code settings (do not
inherit from main model), or the target property UseLocalCustomCodeSettings.

The following criteria determined which custom code settings would apply to the library model:

If ApplyToAllLibs for
the main model is...

And UseLocalCustomCodeSettings
for the library model is...

Then the library model
uses...

True False Main model custom code
True True Local custom code
False True Local custom code
False False Local custom code (by

default, but ambiguous)

The last case was ambiguous, because the main model did not propagate custom code settings and
the library model did not specify use of local custom code settings either. In this case, the default
behavior was to use local custom code settings for the library model.

Behavior in R2008b

In R2008b, the Use these custom code settings for all libraries option for the main model is
removed. The library model either picks up its local custom code settings if specified to do so, or uses

32-23

the main model custom code settings when the Use local custom code settings option is not
selected. This change introduces backward incompatibility for older models that use the "False (main
model), False (library model)" setup for specifying custom code settings.

Workaround to Prevent Backward Incompatibility

To resolve the ambiguity in older models, you must explicitly select Use local custom code settings
for the library model when you want the local custom code settings to apply:

1 Open the Stateflow simulation target for the library model.

a Load the library model and unlock it.
b Open one of the library charts in the Stateflow Editor.
c Select Tools > Open Simulation Target.

2 In the dialog box that appears, select Use local custom code settings (do not inherit from
main model).

New Pattern Wizard for Consistent Creation of Logic Patterns and
Iterative Loops
You can use the Stateflow Pattern Wizard to create commonly used flow graphs such as for-loops in a
quick and consistent manner.

For more information, see Modeling Logic Patterns and Iterative Loops Using Flow Graphs.

Support for Initializing Vectors and Matrices in the Data Properties
Dialog Box
In the Data properties dialog box, you can initialize vectors and matrices in the Initial value field of
the Value Attributes pane.

For more information, see How to Define Vectors and Matrices.

Change in Default Mode for Ordering Parallel States and Outgoing
Transitions
The default mode for ordering parallel states and outgoing transitions is now explicit. When you
create a new chart, you define ordering explicitly in the Stateflow Editor. However, if you load a chart
that uses implicit ordering, that mode is retained until you switch to explicit ordering.

For more information, see Execution Order for Parallel States and Evaluation Order for Outgoing
Transitions.

Optimized Inlining of Code Generated for Stateflow Charts
In R2008b, Real-Time Workshop code generation is enhanced to enable optimized inlining of code
generated for Stateflow charts.

R2008b

32-24

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brrl_o7.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brmhw1h-8.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqfbt0o.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f26-1020719.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f26-1020719.html

More Efficient Parsing for Nonlibrary Models
When you parse a nonlibrary model, library charts that are not linked to this model are ignored. This
enhancement enables more efficient parsing for nonlibrary models.

Change in Casting Behavior When Calling MATLAB Functions in a Chart
When you call MATLAB functions in a Stateflow chart, scalar inputs are no longer cast automatically
to data of type double. This behavior applies when you use the ml operator to call a built-in or
custom MATLAB function. (For details, see ml Namespace Operator.)

Version History
Previously, Stateflow generated code for simulation would automatically cast scalar inputs to data of
type double when calling MATLAB functions in a chart. This behavior has changed. Stateflow charts
created in earlier versions now generate errors during simulation if they contain calls to external
MATLAB functions that expect scalar inputs of type double, but the inputs are of a different data
type.

To prevent these errors, you can change the data type of a scalar input to double or add an explicit
cast to type double in the function call. For example, you can change a function call from
ml.function_name(i) to ml.function_name(double(i)).

Ability to Specify Continuous Update Method for Output Data
In R2008b, you can set the Update Method of output data in continuous-time charts to
Continuous. In previous releases, only local data could use a continuous update method.

Use of Output Data with Change Detection Operators Disallowed for
Initialize-Outputs-at-Wakeup Mode
If you enable the option Initialize Outputs Every Time Chart Wakes Up in the Chart properties
dialog box, do not use output data as the first argument of a change detection operator. When this
option is enabled, the change detection operator returns false if the first argument is an output
data. In this case, there is no reason to perform change detection. (For details, see Detecting
Changes in Data Values.)

Version History
Previously, Stateflow software would allow the use of output data with change detection operators
when you enable the option Initialize Outputs Every Time Chart Wakes Up. This behavior has
changed. Stateflow charts created in earlier versions now generate errors during parsing to prevent
such behavior.

Parsing a Stateflow Chart Without Simulation No Longer Detects
Unresolved Symbol Errors
To detect unresolved symbol errors in a chart, you must start simulation or update the model
diagram. When you parse a chart without simulation or diagram updates, the Stateflow parser does

32-25

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-59542.html#f0-71975
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bq4eoqt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bq4eoqt.html

not have access to all the information needed to check for unresolved symbols, such as exported
graphical functions from other charts and enumerated data types. Therefore, the parser now skips
unresolved symbol detection to avoid generating false error messages. However, if you start
simulation or update the model diagram, you invoke the model compilation process, which has full
access to the information needed, and unresolved symbols are flagged.

For more information, see Parsing Stateflow Charts and How to Check for Undefined Symbols.

Generation of a Unique Name for a Copied State Limited to States
Without Default Labels
If you copy and paste a state in the Stateflow Editor, a unique name is generated for the new state
only if the original state does not use the default ? label. For more information, see Copying
Graphical Objects.

New Configuration Set Created When Loading Nonlibrary Models with
an Active Configuration Reference
When you load a nonlibrary model with an active configuration reference for Stateflow charts or
Truth Table blocks, a copy of the referenced configuration set is created and attached to your model.
The new configuration set is marked active, and the configuration reference is marked inactive. This
behavior does not apply to library models.

For information about using configuration references, see Manage a Configuration Reference.

Version History
In previous releases, you could load a nonlibrary model with an active configuration reference for
Stateflow charts or Truth Table blocks. In R2008b, the configuration reference becomes inactive after
you load the model, and a warning message appears to explain this change in behavior. To restore the
configuration reference to its original active state, follow the instructions in the warning message.

For more information, see Configuration References for Models with Older Simulation Target
Settings.

R2008b

32-26

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f1-1013611.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f1-1026771.html#brbyicz
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f4-59263.html#f4-59481
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f4-59263.html#f4-59481
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2wh78-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs5nfch.html#br4forz
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs5nfch.html#br4forz

R2008a+

Version: 7.1.1

Bug Fixes

33

R2008a

Version: 7.1

New Features

Bug Fixes

Version History

34

Support for Data with Complex Types
Stateflow charts support data with complex data types. You can perform basic arithmetic (addition,
subtraction, and multiplication) and relational operations (equal and not equal) on complex data in
Stateflow action language. You can also use complex input and output arguments for Embedded
MATLAB functions in your chart.

For more information, see Using Complex Data in Stateflow Charts.

Support for Functions with Multiple Outputs
You can specify more than one output argument in graphical functions, truth table functions, and
Embedded MATLAB functions. Previously, you could specify only one output for these types of
functions.

For more information, see Graphical Functions for Reusing Logic Patterns and Iterative Loops, Truth
Table Functions for Decision-Making Logic, and Using MATLAB Functions in Stateflow Charts.

Bidirectional Traceability for Navigating Between Generated Code and
Stateflow Objects
In previous releases, Real-Time Workshop Embedded Coder software provided bidirectional
traceability only for Simulink blocks. In R2008a, bidirectional traceability works between generated
code and Stateflow objects.

For embedded real-time (ERT) based targets, you can choose to include traceability comments in the
generated code. Using the enhanced traceability report, you can click hyperlinks to go from a line of
code to its corresponding object in the model. You can also right-click an object in your model to find
its corresponding line of code.

For more information, see Traceability of Stateflow Objects in Generated Code.

New Temporal Logic Notation for Defining Absolute Time Periods
You can use a keyword named sec to define absolute time periods based on simulation time of your
chart. Use this keyword as an input argument for temporal logic operators, such as after.

For more information, see Using Temporal Logic in State Actions and Transitions.

New temporalCount Operator for Counting Occurrences of Events
You can use the temporalCount operator to count occurrences of explicit or implicit events. This
operator can also count the seconds of simulation time that elapse during chart execution.

For more information, see Using Temporal Logic in State Actions and Transitions and Counting
Events.

Using a Specific Path to a State for the in Operator
When you use the in operator to check state activity, you must use a specific path to a state. The
operator performs a localized search for states that match the given path by looking in each level of

R2008a

34-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brikme5-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f9-59131.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f32-6010.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f32-6010.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f6-6010.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brhfb0t-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-34084.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-34084.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brh9vf0-7.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brh9vf0-7.html

the Stateflow hierarchy between its parent and the chart level. The operator does not do an
exhaustive search of all states in the entire chart. If there are no matches or multiple matches, a
warning message appears and chart execution stops. The search algorithm must find a unique match
to check for state activity.

For more information, see Checking State Activity.

Version History
Previously, you could use a non-specific path to a state as the argument of the in operator, because
the operator performed an exhaustive search for all states in the chart that match the given path. In
the case of multiple matches, a filtering algorithm broke the tie to produce a unique state for
checking activity. This behavior has changed. Stateflow charts created in earlier versions may now
generate errors if they contain an in operator with a non-specific path to a state.

Enhanced MISRA C Code Generation Support
Stateflow Coder software detects missing else statements in if-else structures for generated
code. This enhancement supports MISRA C rule 14.10.

Enhanced Folder Structure for Generated Code
Code files for simulation and code generation targets now reside in the slprj folder. Previously,
generated code files resided in the sfprj folder.

For more information, see Generated Code Files for Targets You Build.

Code Optimization for Simulink Blocks and Stateflow Charts
In R2008a, Real-Time Workshop code generation is enhanced to enable cross-product optimizations
between Simulink blocks and Stateflow charts.

New fitToView Method for Zooming Objects in the Stateflow Editor
You can use the API method fitToView to zoom in on graphical objects in the Stateflow Editor.

For more information, see Zooming a Chart Object with the API.

Generation of a Unique Name for a Copied State
If you copy and paste a state in the Stateflow Editor, a unique name automatically appears for the
new state.

For more information, see Copying Graphical Objects.

New Font Size Options in the Stateflow Editor
In the Stateflow Editor, the font sizes in the Edit > Set Font Size menu now include 2-point, 4-point,
and 50-point. These font options are also available by right-clicking a text item and choosing Font
Size from the context menu.

34-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brf3t4z.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f1-1021515.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/api/bri653c.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f4-59263.html#f4-59481

For more information, see Specifying Colors and Fonts in a Chart.

New Fixed-Point Details Display in the Data Properties Dialog Box
The Data Type Assistant in the Data properties dialog box now displays status and details of fixed-
point data types.

For more information, see Showing Fixed-Point Details.

“What’s This?” Context-Sensitive Help Available for Simulink
Configuration Parameters Dialog
R2008a introduces “What's This?” context-sensitive help for parameters that appear in the Simulink
Configuration Parameters dialog. This feature provides quick access to a detailed description of the
parameters, saving you the time it would take to find the information in the Help browser.

To use the "What's This?" help, do the following:

1 Place your cursor over the label of a parameter.
2 Right-click. A What's This? context menu appears.

For example, the following figure shows the What's This? context menu appearing after a right-
click on the Start time parameter in the Solver pane.

3 Click What's This? A context-sensitive help window appears showing a description of the
parameter.

Specifying Scaling Explicitly for Fixed-Point Data
When you define a fixed-point data type in a Stateflow chart, you must specify scaling explicitly in the
General pane of the Data properties dialog box. For example, you cannot enter an incomplete
specification such as fixdt(1,16) in the Type field. If you do not specify scaling explicitly, you will
see an error message when you try to simulate your model.

To ensure that the data type definition is valid for fixed-point data, perform one of these steps in the
General pane of the Data properties dialog box:

• Use a predefined option in the Type drop-down menu.
• Use the Data Type Assistant to specify the Mode as fixed-point.

For more information, see Defining Data.

Version History
Previously, you could omit scaling in data type definitions for fixed-point data. Such data types were
treated as integers with the specified sign and word length. This behavior has changed. Stateflow

R2008a

34-4

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f4-59263.html#f4-59398
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-32810.html#brj8829
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/briamvr.html

charts created in earlier versions may now generate errors if they contain fixed-point data with no
scaling specified.

Use of Data Store Memory Data in Entry Actions and Default
Transitions Disallowed for Execute-at-Initialization Mode
If you enable the option Execute (enter) Chart At Initialization in the Chart properties dialog box,
you cannot assign data store memory data in state entry actions and default transitions that execute
the first time that the chart awakens. You can use data store memory data in state during actions,
inner transitions, and outer transitions without any limitations.

Previously, assigning data store memory in state entry actions and default transitions with this
option enabled would cause a segmentation violation.

Enhanced Warning Message for Target Hardware That Does Not
Support the Data Type in a Chart
If your target hardware does not support the data type you use in a Stateflow chart, a warning
message appears when you generate code for that chart. This message appears only if the
unsupported data type is present in the chart.

Previously, a warning message appeared if the target hardware did not support a given data type,
even when the unsupported data type was not actually used in the chart.

Detection of Division-By-Zero Violations When Debugger Is Off
Stateflow simulation now detects division-by-zero violations in a chart, whether or not you enable the
debugger.

Previously, disabling the debugger would prevent detection of division-by-zero violations, which
caused MATLAB sessions to crash.

34-5

R2007b+

Version: 7.0.1

Bug Fixes

35

R2007b

Version: 7.0

New Features

Bug Fixes

Version History

36

Enhanced Continuous-Time Support with Zero-Crossing Detection
Using enhanced support for modeling continuous-time systems, you can:

• Detect zero crossings on state transitions, enabling accurate simulation of dynamic systems with
modal behavior.

• Support the definition of continuous state variables and their derivatives for modeling hybrid
systems as state charts with embedded dynamic equations

For more information, see Modeling Continuous-Time Systems in Stateflow Charts.

Version History
Previously, Stateflow charts implemented continuous time simulation without maintaining mode in
minor time steps or detecting zero crossings. Accurate continuous-time simulation requires several
constraints on the allowable constructs in Stateflow charts. Charts created in earlier versions may
generate errors if they violate these constraints.

New Super Step Feature for Modeling Asynchronous Semantics
Using a new super step property, you can enable Stateflow charts to take multiple transitions in each
simulation time step. For more information, see Execution of a Chart with Super Step Semantics.

Support for Inheriting Data Properties from Simulink Signal Objects
Via Explicit Resolution
You can use a new data property, Data Must Resolve to Simulink signal object, to allow local and
output data to explicitly inherit the following properties from Simulink.Signal objects of the same
name that you define in the base workspace or model workspace:

• Size
• Type
• Complexity
• Minimum value
• Maximum value
• Initial value
• Storage class (in Real-Time Workshop generated code)

For more information, see Resolving Data Properties from Simulink Signal Objects.

Version History
Stateflow software no longer performs implicit signal resolution, a feature supported for output data
only. In prior releases, Stateflow software attempted to resolve outputs implicitly to inherit the size,
type, complexity, and storage class of Simulink.Signal objects of the same name that existed in
the base or model workspace. No other properties could be inherited from Simulink signals.

Now, local as well as output data can inherit additional properties from Simulink.Signal objects,
but you must enable signal resolution explicitly. In models developed before Version 7.0 (R2007b) that

R2007b

36-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bq8bzc2.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f26-1024325.html#brccxny
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/braif6e.html

rely on implicit signal resolution, Stateflow charts may not simulate or may generate code with
unexpected storage classes. In these cases, Stateflow software automatically disables implicit signal
resolution for chart outputs and generates a warning at model load time about possible
incompatibilities. Before loading such a model, make sure you have loaded into the base or model
workspace all Simulink.Signal objects that will be used for explicit resolution. After loading,
resave your model in Version 7.0 (R2007b) of Stateflow software.

Common Dialog Box Interface for Specifying Data Types in Stateflow
Charts and Simulink Models
You can use the same dialog box interface for specifying data types in Stateflow charts and Simulink
models. For more information, see Setting Data Properties in the Data Dialog Box.

Support for Animating Stateflow Charts in Simulink External Mode
When running Simulink models in external mode, you can now animate states, and view Stateflow
test points in floating scopes and signal viewers. For more information, see Animating Stateflow
Charts.

These Real-Time Workshop targets support Stateflow chart animation in external mode:

Real-Time Workshop Target External Mode Support Support for Stateflow Chart
Animation in External Mode

GRT (generic real-time) R10 Yes
VxWorks® / Tornado® R10 Yes
RTWin (Real-Time Windows) R11 Yes
Simulink Real-Time™ R12 * No **
ERT (embedded real-time) R13 Yes
RSim (rapid simulation) R13 Yes
MPC5xx R2007a No
C166® R2007a No
TI’s C6000™ R2007a Yes
TI’s C2000™ R2007b No
Rapid Accelerator R2007b Yes
dSPACE® RTI R12.1 *** No

Note

* Simulink Real-Time supported parameter download only from release R12 through R14sp3. As
of release R2006a, Simulink Real-Time supports signal upload as well.

** Simulink Real-Time has documented support for xpcexplr to display the boolean value of test
point Stateflow states. You can also retrieve the state value via the Simulink Real-Time
command-line API. There is no documented support for animating a Stateflow chart that is
running in Simulink external mode.

36-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-32810.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#braiixf
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f5-999651.html#braiixf

*** dSPACE RTI supports parameter download only.

Support for Target Function Library
Stateflow Coder code generation software supports the Target Function Library published by Real-
Time Workshop Embedded Coder software, allowing you to map a subset of built-in math functions
and arithmetic operators to target-specific implementations. For more information, see Replacing
Operators with Target-Specific Implementations and Replacement of C Math Library Functions with
Target-Specific Implementations.

Support for Fixed-Point Parameters in Truth Table Blocks
You can now define fixed-point parameters in Truth Table blocks.

Support for Using Custom Storage Classes to Control Stateflow Data
in Generated Code
You can use custom storage classes to control Stateflow local data, output data, and data store
memory in Real-Time Workshop generated code.

For more information, see Custom Storage Classes in the Real-Time Workshop Embedded Coder
documentation.

Loading 2007b Stateflow Charts in Earlier Versions of Simulink
Software
If you save a Stateflow chart in release 2007b, you will not be able to load the corresponding model in
earlier versions of Simulink software. To work around this issue, save your model in the earlier
version before loading it, as follows:

1 In the Simulink model window, select File > Save As.
2 In the Save as type field, select the version in which you want to load the model.

For example, if you want to load the model in the R2007a version of Simulink software, select
Simulink 6.6/R2007a Models (#.mdl).

Bug Fixed for the History Junction
In previous releases, there was a bug where a default transition action occurred more than once if
you used a history junction in a state containing only a single substate. The history junction did not
remember the state's last active configuration unless there was more than one substate. This bug has
been fixed.

R2007b

36-4

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-57618.html#brdjwsc
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-57618.html#brdjwsc
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-65269.html#brde8y9
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f0-65269.html#brde8y9
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/f6010dfi1.html

R2007a+

Version: 6.6.1

Bug Fixes

37

R2007a

Version: 6.6

New Features

Bug Fixes

38

New Operators for Detecting Changes in Data Values
You can use three new operators for detecting changes in Stateflow data values between time steps:

• hasChanged
• hasChangedFrom
• hasChangedTo

For more information, see Detecting Changes in Data Values.

Elimination of “goto” Statements from Generated Code
The code generation process automatically eliminates goto statements from generated code to
produce structured, readable code that better supports MISRA C rules.

R2007a

38-2

https://www.mathworks.com/help/releases/R2012b/stateflow/ug/detecting-changes-in-data-values.html

R2006b

Version: 6.5

New Features

Bug Fixes

39

Support for Mealy and Moore Charts
You can use a new chart property to constrain finite state machines to use either Mealy or Moore
semantics. You can create Stateflow charts that implement pure Mealy or Moore semantics as a
subset of Stateflow chart semantics. Mealy and Moore charts can be used in simulation and code
generation of C and hardware description language (HDL). See Building Mealy and Moore Charts.

New Structure Data Type Provides Support for Buses
You can use a structure data type to interface Simulink bus signals with Stateflow charts and truth
tables, and to define local and temporary structures. You specify Stateflow structure data types as
Simulink.Bus objects. See Working with Structures and Bus Signals in Stateflow Charts.

Note Signal logging is not available for Stateflow structures.

Custom Integer Sizes
Integers are no longer restricted in size to 8, 16, or 32 bits. You can now enter word lengths of any
size from one to 32 bits.

R2006b

39-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqtktf3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bquvixr.html

R2006a+

Version: 6.4.1

No New Features or Changes

40

R2006a

Version: 6.4

New Features

41

Option to Initialize Outputs When Chart Wakes Up
You can use a new chart option Initialize Outputs Every Time Chart Wakes Up. Use this to
initialize the value of outputs every time a chart wakes up, not only at time 0 (see Setting Properties
for a Single Chart in the online documentation). When you enable this option, outputs are reset
whenever the chart is triggered, whether by a function call, edge trigger, or clock tick. The option
ensures that outputs are defined in every chart execution and prevents latching of outputs.

Ability to Customize the Stateflow User Interface
You can use MATLAB code to perform the following customizations of the standard Stateflow user
interface:

• Add items and submenus that execute custom commands in the Stateflow Editor
• Disable or hide menu items in the Stateflow Editor

Using the MATLAB Workspace Browser for Debugging Stateflow Charts
The MATLAB Workspace Browser is no longer available for debugging Stateflow charts. To view
Stateflow data values at breakpoints during simulation, use the MATLAB command line or the Browse
Data window in the Stateflow Debugger.

Chart and Truth Table Blocks Require C Compiler for 64-Bit Windows
Operating Systems
No C compiler ships with Stateflow software for 64-bit Windows operating systems. Because
Stateflow software performs simulation through code generation, you must supply your own MEX-
supported C compiler if you wish to use Stateflow Chart and Truth Table blocks. The C compilers
available at the time of this writing for 64-bit Windows operating systems include the Microsoft
Platform SDK and the Microsoft Visual Studio development system.

R2006a

41-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f12-1025321.html#f12-1026257
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f12-1025321.html#f12-1026257

R14SP3

Version: 6.3

New Features

42

Data Handling
Sharing Global Data Between Simulink Models and Stateflow Charts

This release provides an interface that gives Stateflow charts access to global variables in Simulink
models. A Simulink model implements global variables as data stores, created either as data store
memory blocks or instances of Simulink.Signal objects. Now Stateflow charts can share global
data with Simulink models by reading and writing data store memory symbolically using the
Stateflow action language. See Sharing Global Data with Multiple Charts.

Enhancements to Data Properties Dialog Box

The Stateflow data properties dialog box has been enhanced to:

• Accommodate fixed-point support
• Support parameter expressions in data properties

Stateflow charts now accept Simulink parameters or parameters defined in the MATLAB workspace
for the following properties in the data properties dialog box:

• Initial Value
• Minimum
• Maximum

Entries for these parameters can be expressions that meet the following requirements:

• Expressions must evaluate to scalar values.
• For library charts, the expressions for these properties must evaluate to the same value for all

instances of the library chart. Otherwise, a compile-time error appears.

See Defining Data.

Truth Table Enhancements
Using Embedded MATLAB Action Language in Truth Tables

You can now use the Embedded MATLAB action language in Stateflow truth tables. Previously, you
were restricted to the Stateflow action language. The Embedded MATLAB action language offers the
following advantages:

• Supports the use of control loops and conditional constructs in truth table actions
• Provides direct access to all MATLAB functions

See Truth Table Functions for Decision-Making Logic.

Embedded MATLAB Truth Table Block in Simulink Models

A truth table function block is now available as an element in the Simulink library. With this new
block, you can call a truth table function directly from your Simulink model. Previously, there was a
level of indirection. Your Simulink model had to include a Stateflow block that called a truth table
function.

R14SP3

42-2

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqfj9xz.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/briamvr.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f32-6010.html

The Simulink truth table block supports the Embedded MATLAB language subset only. You must have
a Stateflow software license to use the Truth Table block in Simulink models.

See Truth Table Functions for Decision-Making Logic.

API Enhancements
Retrieving Object Handles of Selected Stateflow Objects

A new function sfgco retrieves the object handles of the most recently selected objects in a
Stateflow chart.

Default Case Handling in Generated Code

Stateflow Coder software now implements a default case in generated switch statements to account
for corrupted memory at runtime. In this situation, the default case performs a recovery operation by
calling the child entry functions of the state whose variable is out of bounds. Reentering the state
resets the variable to a valid value.

This recovery operation is not performed if a Stateflow chart contains any of the following elements:

• Local events
• Machine-parented events
• Implicit events, such as state entry, state exit, and data change

If any of these conditions exist in a chart, state machine processing can become recursive, causing
variables to temporarily assume values that are out of range. However, when processing finishes, the
variables return to valid values.

Greater Usability
Specifying Execution Order of Parallel States Explicitly

You can specify the execution order of parallel states explicitly in Stateflow charts. Previously, the
execution order of parallel states was governed solely by implicit rules, based on geometry. A
disadvantage of implicit ordering is that it creates a dependency between design layout and execution
priority. When you rearrange parallel states in your chart, you may inadvertently change order of
execution and affect simulation results. Explicit ordering gives you more control over your designs.
See Execution Order for Parallel States.

Hyperlinking Simulink Subsystems from Stateflow Events

You can now directly hyperlink the Simulink subsystem connected to a Stateflow output event by
using the context menu option Explore for any state or transition broadcasting event. See Accessing
Simulink Subsystems Triggered By Output Events.

Warnings for Transitions Looping Out of Logical Parent

A common modeling error is to create charts where a transition loops out of the logical parent of the
source and destination objects. The logical parent is either a common parent of the source and
destination objects, or if there is no common parent, the nearest common ancestor.

Consider the following example:

42-3

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f32-6010.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ref/sfgco.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqfbt0o.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-23622.html#bqjfhdh
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f7-23622.html#bqjfhdh

In this chart, transition 1 loops outside of logical parent A, which is the common parent of transition
source B and destination C.

This type of illegal looping causes the parent to deactivate and then reactivate. In the previous
example, if transition 1 is taken, the exit action of A executes and then the entry action of A executes.
Executing these actions unintentionally can cause side effects.

This situation is now detected as a parser warning that indicates how to fix the model. Here is the
warning associated with the earlier example:

R14SP3

42-4

Differentiating Syntax Elements in the Stateflow Action Language

You can now use color highlighting to differentiate syntax elements in the Stateflow action language.
Syntax highlighting is enabled by default. To specify highlighting preferences, select Highlighting
Preferences from the chart Edit menu, and then click the colors you want to change. See
Differentiating Syntax Elements in the Stateflow Action Language.

Stateflow Chart Notes Click Function

This release introduces enhancements to Stateflow chart notes. The chart notes property dialog box
now has a ClickFcn section, which includes the following options:

• Use display text as click callback check box
• ClickFcn edit field

See Annotations Properties Dialog Box for a description of these new options.

Chart Viewing Enhancements

This release adds the following chart viewing enhancements:

• “View Command History” on page 42-5
• “New View Menu Viewing Commands” on page 42-5
• “New Shortcut Menu Commands” on page 42-5
• “View Command Shortcut Keys” on page 42-5

View Command History

This release enhances the chart viewing commands. You can now maintain a history of the chart
viewing commands, i.e., pan and zoom, that you execute for each chart window. The history allows
you to quickly return to a previous view in a window, using commands for traversing the history.

New View Menu Viewing Commands

This release adds the following viewing commands to the chart’s View menu:

• View > Back

Displays the previous view in the view history.
• View > Forward

Displays the next view in the view history.
• View > Go To Parent

Goes to the parent of the current subchart.

New Shortcut Menu Commands

The shortcut menu now has Forward and Go To Parent commands. The Back command has been
moved to be with these new commands.

View Command Shortcut Keys

This release adds the following viewing command shortcut keys for users running the UNIX operating
system or the Windows operating system:

42-5

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/f4-59263.html#bqi6gh4
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-14820.html#bqgu4__

Shortcut Key Command
d or Ctrl+Left Arrow Pan left
g or Ctrl+Right Arrow Pan right
e or Ctrl+Up Arrow Pan up
c or Ctrl+Down Arrow Pan down
b Go back in pan/zoom history
t Go forward in pan/zoom history

Note These shortcut keys, together with the existing zoom shortcuts (r or + for zoom in, v or - for
zoom out), allow you to pan and zoom a model with one hand (your left hand).

R14SP3

42-6

R14SP2

Version: 6.2

New Features

Version History

43

User-Specified Transition Execution Order
Stateflow charts now support a mode where you can explicitly specify the testing or execution order
of transitions sourced by states and junctions. This mode is called the explicit mode. The implicit
mode retains the old functionality, where the transition execution order is determined based on a set
of rules (parent depth, triggered and conditional properties, and geometry around the source). In
addition, the transition numbers, according to their execution order, now appear on the Stateflow
Editor at all times, in both implicit and explicit modes.

Old models created in earlier releases load in implicit mode, which produces identical simulation
results. Any new charts created use implicit mode by default. To change to explicit mode, use the
Chart properties dialog box.

Enhanced Integration of Stateflow Library Charts with Simulink
Models
Charts in library models do not require full specification of data type and size. During simulation,
library charts can inherit data properties from the main model in which you link them.

This enhancement also affects code generation in library charts. When building simulation and code
generation targets, only the library charts that you link in the main model participate in code
generation.

Version History
In previous releases, library charts required complete specification of data properties. You had to
enter these properties for both the library chart and the main model before simulation.

Stateflow Charts and Embedded MATLAB Functions Support Simulink
Data Type Aliases
Data in Stateflow charts and Embedded MATLAB functions may now be explicitly typed using the
same aliased types that a Simulink model uses. Also, inherited and parameterized data types in
Stateflow charts and Embedded MATLAB functions support propagation of aliased types. However,
code generated for Stateflow charts and Embedded MATLAB functions does not yet preserve aliased
data types.

Fixed-Point Override Supported for Library Charts
You can now specify fixed-point override for Stateflow library charts.

R14SP2

43-2

	R2022a
	Use Symbols pane while writing MATLAB function code
	Manage Stateflow breakpoints in the Simulink Breakpoints List pane
	Expanded string support for charts that use MATLAB as the action language
	Repeat data names at different levels of the chart hierarchy
	Export chart-level Simulink functions
	Convert states that contain supertransitions to atomic subcharts
	Convert machine-parented data to chart-parented data store memory
	Functionality being removed or changed
	Use strong data typing with Simulink I/O chart property has been removed

	R2021b
	Create entry and exit connections across hierarchy boundaries
	Detect rising and falling edges in data expressions
	MATLAB Function block editor in Stateflow window
	Index and assign values to arrays of structures in C action language
	String support for charts that use MATLAB as the action language
	Navigate using the Stateflow miniature map
	Functionality being removed or changed
	Stateflow charts no longer support creating machine-parented data
	Stateflow truth tables no longer generate content

	R2021a
	Edit the color of data syntax highlighting
	Add Stateflow chart behavior to an architecture component
	64-bit integer type support for parameters
	Half-precision data type support
	Multidimensional variable support for row-major arrays
	Reverse transitions
	Insert components without leaving the Stateflow canvas

	R2020b
	Visualize chart behavior with the Activity Profiler
	Design state machines to control MATLAB apps
	Connect dashboard blocks to Stateflow
	Execute standalone charts saved in earlier versions of Stateflow
	Programmatically extract actions from states and transitions
	Multidimensional custom code function support for row-major
	Use the Sequence Viewer in the toolstrip to visualize message flow, function calls, and state transitions
	Generated default switch cases determined alphabetically

	R2020a
	Generate code for variant software configurations
	64-bit integer type support for charts that use MATLAB as the action language
	Cache and report compilation warnings
	Multidimensional array indexing for constant, Data Store Memory, and message data
	Absolute-time temporal logic operators for standalone charts in MATLAB
	Event queuing semantics in standalone charts in MATLAB
	Export standalone Stateflow charts for execution in earlier versions of MATLAB
	Functionality being removed or changed
	Behavior in charts with 64-bit fixed-point type inputs could change

	R2019b
	Stateflow Onramp: Self-paced, interactive tutorial for getting started with Stateflow
	Simulink Toolstrip: Access Stateflow capabilities by using contextual tabs
	Stateflow Editor Changes

	Flow Charts from MATLAB: Visualize MATLAB scripts and functions as Stateflow flow charts
	64-bit integer types int64 and uint64
	Change detection in standalone Stateflow charts
	Debugging enhancements for standalone Stateflow charts in MATLAB
	Enhanced support of row-major data in Stateflow blocks
	External receiving queues for input messages
	Message delivery in debugging mode
	Propagation of symbolic dimensions for Stateflow data
	Stateflow cache file support for code generation and Simulink
	Zoom in Truth Tables
	Functionality being removed or changed
	Use dot notation to access message data in MATLAB functions and truth tables
	Transition execution order is always visible
	Log multiple signals
	Opening Stateflow

	R2019a
	Stateflow Charts in MATLAB: Graphically program, debug, and execute standalone state machines as MATLAB objects
	Truth Table Breakpoints: Check Truth Table logic by setting breakpoints and stepping though Truth Table simulation
	Custom Code Symbols: Examine values when debugging a chart
	Change detection for buses and matrices
	Enhanced subchart mapping capabilities
	Optimized counters for temporal logic
	Relaxed restrictions on Moore charts
	State machine logic control by using the count operator
	Stateflow contextual tabs in the Simulink Toolstrip

	R2018b
	Simulation Debugger: Check chart logic with simplified breakpoint management, statement-by-statement stepping, and in-canvas visualization of data and time
	External C Code: Fully integrate external C code in Stateflow charts with change synchronization, error checking, and analysis by Simulink Coverage and Simulink Design Verifier
	Row-Major Array Layout: Define the array layout as row-major to simplify integration with external C/C++ functions, tools, and libraries
	Strings: Design embedded systems with native support of strings
	Messages: Produce strictly typed, readable, and MISRA-C Mandatory and Required check compliant code from messages
	C action language in state transition tables
	Custom code headers for enumerated data and buses
	Multidimensional array indexing in generated code
	Pass-by-reference semantics in functions
	Functionality being removed or changed
	Stateflow charts that integrate custom code may need to turn off option Import Custom Code in the Configuration Parameters

	R2018a
	Truth Table Editor: Design combinatorial logic within the Simulink and Stateflow editing environment by using edit-time checking, animation, and step-by-step debugging
	Just-In-Time Debugger: Set breakpoints and debug Stateflow charts while using Just-In-Time simulation
	Implicit entry,during action type for unspecified state actions
	Input events for atomic subcharts

	R2017b
	Simulink Subsystem as a Stateflow State: Design states by using continuous and periodic Simulink algorithms to model hybrid systems
	Sequence Viewer: Visualize state changes, event activity, and function calls over time
	State and Data Visualization: Stream state activity and data directly from Stateflow to the Simulation Data Inspector
	Transition Syntax Cues: Create transition labels using syntax cues
	Symbols pane preferences
	Conversion of Switch-Case statements with parameters
	Local data initialization
	Scoped Simulink functions

	R2017a
	Stateflow Layout: Automatically improve chart readability
	Temporal Logic Operators: Express state machine logic more concisely by using the duration and the elapsed operators
	Message Operations: Manage messages and analyze message queues with the keywords discard, length, isvalid, and receive
	Editing cues for creating junctions and states
	Automatic port generation
	Automatic correction of variable type assignment errors
	Reduce use of coder.extrinsic
	Zoom in State Transition Tables
	Absolute-time temporal logic code generation
	State behavior specification for Truth Table blocks with function-call input events

	R2016b
	Edit-Time Checking: Detect and fix potential issues in charts at design time
	Symbol Manager: Create and manage data, events, and messages directly in the Stateflow Editor
	Property Inspector: Edit properties of graphical and nongraphical objects directly in the Stateflow Editor
	State Transition Table Debugging: Design and debug tabular state machines faster by using animation, syntax highlighting, and breakpoints
	Syntax Highlighting: Identify events and function names easily in charts with MATLAB as the action language
	Scoped Simulink Function Access: Call exported chart functions with restricted scope from Simulink function blocks
	Diagnostic configuration parameters
	Diagnostic level option for message queue overflows
	Message Viewer updates to inspect values of structured data and sequencing of function calls
	Bus support for Simulink Caller blocks calling Stateflow functions
	Conditional breakpoints in MATLAB Functions for run-time debugging
	Compiler optimization parameter support for faster simulation
	Text Autocompletion for State Transition Tables

	R2016a
	Smart Editing Cues: Accelerate common editing tasks with just-in-time contextual prompts
	Intelligent Chart Completion: Build charts faster with automatic addition of default transitions and creation of complementary state names
	Simulink Units: Specify, visualize, and check consistency of units on chart interfaces
	Output Logging: Log output signals for charts
	JIT for Messages: Reduce model update time for messages with JIT compilation technology
	API changes for commented objects
	Stateflow model templates for common design patterns
	UserData parameter available for storing values

	R2015aSP1
	R2015b
	Multilingual Labels: Use any language to create comments and descriptions in states and transitions
	Messages: Objects that carry data and can be queued
	Overflow and data range detection settings unified with Simulink
	New State Transition Table Editor: Dock state transition tables within the Stateflow editor window
	Monitor State Activity in Code: Bind active state child variable to Simulink.Signal for controlling its properties in generated code
	Initial values supported for data in charts that use MATLAB as the action language
	Continuous-time update method not allowed in Moore charts

	R2015a
	JIT compilation technology to reduce model update time
	Mapping of atomic subchart variables with main chart variables of different scope
	Moore chart improvements for functions, local data, and code readability
	Nonprefixed enumerations in charts using MATLAB as action language
	Removal of transition error checking
	Removal of set breakpoints options in property dialog boxes

	R2014b
	Comment-out capability to disable objects in the state diagram
	Window to manage conditional breakpoints and watch chart data
	Simulink blocks that create and call functions across Simulink and Stateflow
	User-controlled enumeration size for active state output
	Faster chart simulation and animation
	Improved state transition matrix
	Active state output not allowed with Initialize Outputs Every Time Chart Wakes Up

	R2014a
	Intelligent tab completion in charts
	Single chart block in Stateflow library with MATLAB as the default action language
	Bus signal logging in charts
	Output of leaf-state activity to Simulink
	UTF-16 character support for Stateflow blocks
	Syntax auto-correction inserts explicit cast for literals
	Improved algebraic loop handling in Simulink can affect Stateflow blocks
	Typedef generation management for imported buses and enumerations
	Updated Search & Replace tool
	Support of complex data types with data store memory
	Streamlined MEX compiler setup and improved troubleshooting
	Moore chart outputs cannot depend on inputs
	Transition conflict error checking only on C charts with implicit execution order

	R2013b
	LCC compiler included on Windows 64-bit platform for running simulations
	Tab completion for keywords and data in charts
	Pattern Wizard for inserting logic patterns into existing flow charts
	Absolute time temporal logic keywords, msec and usec, for specifying short time intervals
	Continuous time support in charts with MATLAB as the action language
	Content preview for Stateflow charts
	Code generation improvement for absolute-time temporal logic in charts with discrete sample times

	R2013a
	Output of child-state activity to Simulink using automatically managed enumerations
	Masking of Stateflow block to customize appearance, parameters, and documentation
	Option to parse Stateflow chart to detect syntax errors and unresolved symbols without updating diagram
	Propagation of parameter names to generated code for improved code readability
	Complex inputs and outputs for exported graphical functions
	Use of type(data_name) for specifying output data type disallowed for buses
	New and enhanced examples

	R2012b
	New editor for Stateflow charts and Simulink models with tabbed windows and model browser tree
	Stateflow Editor menu bar changes
	Stateflow Editor context menu changes
	Stateflow keyboard and mouse shortcut changes

	Editing assistance through smart guides, drag margins, transition indicator lines, and just-in-time error notifications
	State transition tables that provide tabular interface to model state machines
	MATLAB language for state and transition labels with chart syntax auto-correction
	In-chart debugging with visual breakpoints and datatips
	Reuse of graphical functions with atomic boxes
	Fewer restrictions for converting states to atomic subcharts
	Diagnostic for undirected local event broadcasts
	Diagnostic for transition action specified before condition action
	Parentheses to identify function-call output events on chart and truth table block icons
	Resolution of qualified state and data names
	Support for simulating charts in a folder that has the # symbol on 32-bit Windows platforms
	Mac screen menubar enabled when Stateflow is installed
	Option to print charts to figure windows no longer available
	End of Broadcast breakpoint no longer available for input events
	Boxes can no longer be converted to states

	R2012a
	API Method for Highlighting Chart Objects
	API Method for Finding Transitions That Terminate on States, Boxes, or Junctions
	API Property That Specifies the Destination Endpoint of a Transition
	Structures and Enumerated Data Types Supported for Inputs and Outputs of Exported Graphical Functions
	Mappings Tab in Atomic Subchart Properties Dialog Lists All Valid Scopes
	Full Decision Coverage When Suppressing Default Cases in the Generated Code
	Specification of Custom Header Files in the Configuration Parameters Dialog Box Required for Enumerated Types
	Removal of ‘Use Strong Data Typing with Simulink I/O’ in a Future Release

	R2011b
	Chart Property to Control Saturation for Integer Overflow
	Enhanced User Interface for Logging Data and States
	Control of Default Case Generation for Switch-Case Statements in Generated Code
	Detection of State Inconsistency Errors at Compile Time Instead of Run Time
	Ability to Model Persistent Output Data for Mealy and Moore Charts
	Control of Diagnostic for Multiple Unconditional Transitions from One Source
	MEX Compilation with Microsoft Windows SDK 7.1 Now Supported
	Simulation Supported When the Current Folder Is a UNC Path
	Removal of the Coverage Tab from the Stateflow Debugger
	Test Point Selection Moved to the Logging Tab in Properties Dialog Boxes

	R2011a
	Migration of Stateflow Coder Features to New Product
	Embedded MATLAB Functions Renamed as MATLAB Functions in Stateflow Charts
	Use of MATLAB Expressions to Specify Data Size
	Ability to Change Data Values While Debugging
	Ability to Debug a Single Chart When Multiple Charts Exist in a Model
	Support for Input Events in Atomic Subcharts
	Control of Generated Function Names for Atomic Subcharts
	Enhanced Data Sorting in the Stateflow Debugger
	Option to Maintain Highlighting of Active States After Simulation
	Right-Click Options for Setting Local Breakpoints
	New Signal Logging Format That Simplifies Access to States and Local Data
	Support for Buses in Data Store Memory
	Enhanced Readability of State Functions
	Support for Arrays of Buses as Inputs and Outputs of Charts and Functions
	Default Setting of 'States When Enabling' Chart Property Now Held
	Initial Value Vectors with Fixed-Point or Enumerated Values Now Evaluate Correctly
	Mac Screen Menubar Disabled When Stateflow Is Installed

	R2010bSP2
	R2010bSP1
	R2010b
	New Atomic Subcharts to Create Reusable States for Large-Scale Modeling
	Stateflow Library Charts Now Support Instances with Different Data Sizes, Types, and Complexities
	Support for Controlling Stateflow Diagnostics in the Configuration Parameters Dialog Box
	Enhanced Custom-Code Parsing to Improve Reporting of Unresolved Symbols
	Temporal Logic Conditions Can Now Guard Transitions Originating from Junctions
	Data Dialog Box Enhancements
	Branching of Function-Call Output Events No Longer Requires Binding of Event to a State
	Passing Real Values to Function Inputs of Complex Type Disallowed
	Using Chart Block That Accesses Global Data in For Each Subsystem Disallowed
	New and Enhanced Demos

	R2010a
	Support for Combining Actions in State Labels
	New Diagnostic Detects Unused Data and Events
	Enhanced Support for Variable-Size Chart Inputs and Outputs
	Support for Chart-Level Data with Fixed-Point Word Lengths Up to 128 Bits
	New 'States When Enabling' Property for Charts with Function-Call Input Events
	Support for Tunable Structures of Parameter Scope in Charts
	Enhanced Real-Time Workshop Code Generation for Noninlined State Functions
	Enhanced Real-Time Workshop Code Generation for sizeof Function
	Enhanced Real-Time Workshop Code Generation for Custom-Code Function Calls
	Data Change Implicit Event No Longer Supports Machine-Parented Data
	Support for Machine-Parented Events Completely Removed
	MEX Compilation with Microsoft Visual Studio .NET 2003 No Longer Supported
	Code Generation Status Messages No Longer Shown in Command Window
	Change in Behavior for Appearance of Optimization Parameters
	Enhanced Inlining of Generated Code That Calls Subfunctions
	Check Box for 'Treat as atomic unit' Now Always Selected

	R2009bSP1
	R2009b
	Ability to Copy Simulink Function-Call Subsystems and Paste in Stateflow Editor as Simulink Functions, and Vice Versa
	Ability to Generate Switch-Case Statements for Flow Graphs and Embedded MATLAB Functions Using Real-Time Workshop Embedded Coder Software
	Support for Creating Switch-Case Flow Graphs Using the Pattern Wizard
	Support for Using More Than 254 Events in a Chart
	Improved Panning and Selection of States and Transitions When Using Stateflow Debugger
	Stateflow Compilation Status Added to Progress Indicator on Simulink Status Bar
	Support for Chart Inputs and Outputs That Vary in Dimension During Simulation
	New Compilation Report for Embedded MATLAB Functions in Stateflow Charts
	Enhanced Support for Replacing Math Functions with Target-Specific Implementations
	Enhanced Context Menu Support for Adding Flow Graph Patterns to Charts
	Option to Log Chart Signals Available in the Stateflow Editor
	Default Precision Set to Double for Calls to C Math Functions
	Change in Text and Visibility of Parameter Prompt for Easier Use with Fixed-Point Advisor and Fixed-Point Tool
	Charts Closed By Default When Opening Models Saved in Formats of Earlier Versions

	R2009a
	Support for Saving the Complete Simulation State at a Specific Time
	Enhanced Support for Enumerated Data Types
	New Boolean Keywords in Stateflow Action Language
	Enhanced Control of Inlining State Functions in Generated Code
	New Diagnostic to Detect Unintended Backtracking Behavior in Flow Graphs
	Use of Basic Linear Algebra Subprograms (BLAS) Libraries for Speed
	Enhanced Support for Replacing C Math Functions with Target-Specific Implementations
	Smart Transitions Now Prefer Straight Lines
	Clicking Up-Arrow Button in the Stateflow Editor Closes Top-Level Chart
	Enhanced Type Resolution for Symbols
	Enhanced Code Generation for Stateflow Events
	Enhanced Real-Time Workshop Generated Code for Charts with Simulink Functions
	Use of en, du, ex, entry, during, and exit for Data and Event Names Being Disallowed in a Future Version
	Support for Machine-Parented Events Being Removed in a Future Version

	R2008b
	Support for Embedding Simulink Function-Call Subsystems in a Stateflow Chart
	Support for Using Enumerated Data Types in a Stateflow Chart
	New Alignment, Distribution, and Resizing Commands for Stateflow Charts
	Unified Simulation and Embeddable Code Generation Options for Stateflow Charts and Truth Table Blocks
	GUI Changes in Simulation Options for Nonlibrary Models
	GUI Changes in Simulation Options for Library Models
	GUI Enhancements in Real-Time Workshop Code Generation Options for Nonlibrary Models
	GUI Changes in Real-Time Workshop Code Generation Options for Library Models
	Mapping of Target Object Properties to Parameters in the Configuration Parameters Dialog Box
	New Parameters in the Configuration Parameters Dialog Box for Simulation and Embeddable Code Generation

	New Pattern Wizard for Consistent Creation of Logic Patterns and Iterative Loops
	Support for Initializing Vectors and Matrices in the Data Properties Dialog Box
	Change in Default Mode for Ordering Parallel States and Outgoing Transitions
	Optimized Inlining of Code Generated for Stateflow Charts
	More Efficient Parsing for Nonlibrary Models
	Change in Casting Behavior When Calling MATLAB Functions in a Chart
	Ability to Specify Continuous Update Method for Output Data
	Use of Output Data with Change Detection Operators Disallowed for Initialize-Outputs-at-Wakeup Mode
	Parsing a Stateflow Chart Without Simulation No Longer Detects Unresolved Symbol Errors
	Generation of a Unique Name for a Copied State Limited to States Without Default Labels
	New Configuration Set Created When Loading Nonlibrary Models with an Active Configuration Reference

	R2008a+
	R2008a
	Support for Data with Complex Types
	Support for Functions with Multiple Outputs
	Bidirectional Traceability for Navigating Between Generated Code and Stateflow Objects
	New Temporal Logic Notation for Defining Absolute Time Periods
	New temporalCount Operator for Counting Occurrences of Events
	Using a Specific Path to a State for the in Operator
	Enhanced MISRA C Code Generation Support
	Enhanced Folder Structure for Generated Code
	Code Optimization for Simulink Blocks and Stateflow Charts
	New fitToView Method for Zooming Objects in the Stateflow Editor
	Generation of a Unique Name for a Copied State
	New Font Size Options in the Stateflow Editor
	New Fixed-Point Details Display in the Data Properties Dialog Box
	“What’s This?” Context-Sensitive Help Available for Simulink Configuration Parameters Dialog
	Specifying Scaling Explicitly for Fixed-Point Data
	Use of Data Store Memory Data in Entry Actions and Default Transitions Disallowed for Execute-at-Initialization Mode
	Enhanced Warning Message for Target Hardware That Does Not Support the Data Type in a Chart
	Detection of Division-By-Zero Violations When Debugger Is Off

	R2007b+
	R2007b
	Enhanced Continuous-Time Support with Zero-Crossing Detection
	New Super Step Feature for Modeling Asynchronous Semantics
	Support for Inheriting Data Properties from Simulink Signal Objects Via Explicit Resolution
	Common Dialog Box Interface for Specifying Data Types in Stateflow Charts and Simulink Models
	Support for Animating Stateflow Charts in Simulink External Mode
	Support for Target Function Library
	Support for Fixed-Point Parameters in Truth Table Blocks
	Support for Using Custom Storage Classes to Control Stateflow Data in Generated Code
	Loading 2007b Stateflow Charts in Earlier Versions of Simulink Software
	Bug Fixed for the History Junction

	R2007a+
	R2007a
	New Operators for Detecting Changes in Data Values
	Elimination of “goto” Statements from Generated Code

	R2006b
	Support for Mealy and Moore Charts
	New Structure Data Type Provides Support for Buses
	Custom Integer Sizes

	R2006a+
	R2006a
	Option to Initialize Outputs When Chart Wakes Up
	Ability to Customize the Stateflow User Interface
	Using the MATLAB Workspace Browser for Debugging Stateflow Charts
	Chart and Truth Table Blocks Require C Compiler for 64-Bit Windows Operating Systems

	R14SP3
	Data Handling
	Sharing Global Data Between Simulink Models and Stateflow Charts
	Enhancements to Data Properties Dialog Box

	Truth Table Enhancements
	Using Embedded MATLAB Action Language in Truth Tables
	Embedded MATLAB Truth Table Block in Simulink Models

	API Enhancements
	Retrieving Object Handles of Selected Stateflow Objects
	Default Case Handling in Generated Code

	Greater Usability
	Specifying Execution Order of Parallel States Explicitly
	Hyperlinking Simulink Subsystems from Stateflow Events
	Warnings for Transitions Looping Out of Logical Parent
	Differentiating Syntax Elements in the Stateflow Action Language
	Stateflow Chart Notes Click Function
	Chart Viewing Enhancements

	R14SP2
	User-Specified Transition Execution Order
	Enhanced Integration of Stateflow Library Charts with Simulink Models
	Stateflow Charts and Embedded MATLAB Functions Support Simulink Data Type Aliases
	Fixed-Point Override Supported for Library Charts

